Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 11(23)2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36501369

ABSTRACT

Cyperus aromaticus (Navua sedge) is a problematic perennial weed in pastures and crops including sugarcane, banana, rice, and fruits and vegetables in tropical climates. It reproduces both via rhizomes and seeds. As a regenerative and storage organ, these rhizomes play an important part in the invasion, establishment, and persistence of this weed. To eliminate their regenerative ability, it is important to understand the regrowth potential with respect to rhizome fragment size and burial depth. This study evaluated the emergence of C. aromaticus from rhizomes in a controlled condition. Three different sizes of rhizome fragments were buried at seven depths of up to 20 cm in two soil types. The experimental measurements included (i) the time for tillers to emerge, (ii) the cumulative emergence of tillers, recorded weekly, and (iii) the number of underground emerging tillers. The cumulative shoot emergence and the number of underground tillers produced were found to be positively correlated with the initial length of the rhizome fragments and negatively correlated with the burial depth. The time for the emergence of the tillers was negatively correlated with the burial depth, and soil type had no significant effect on any of the parameters recorded. There was no emergence recorded from rhizomes buried at 15 cm depth and deeper, irrespective of their size. Our results indicate that the combination of the fragmentation of rhizomes into small pieces and a deep burial, below 15 cm, is an important aspect to control the regeneration of C. aromaticus from rhizomes, if tillage is carried out, and can therefore form a part of an integrated weed management strategy for this troublesome weed.

2.
Plants (Basel) ; 11(24)2022 Dec 11.
Article in English | MEDLINE | ID: mdl-36559580

ABSTRACT

Navua sedge (Cyperus aromaticus (Ridley) Mattf. & Kukenth) is a significant agricultural and environmental weed found in tropical island countries including north Queensland, Australia. It is a prolific seed producer and consequently forms a high-density seedbank, and therefore understanding the longevity and persistence of the seeds can provide critical information required for the management of this species. A laboratory-controlled artificial ageing experiment was conducted where the seeds were exposed to a temperature of 45 °C and 60% relative humidity for 125 days. Seeds were removed at various times (1, 2, 5, 9, 20, 30, 50, 75, 100 and 125 days) and their viability determined through standard germination tests. It took 20 days in the artificial ageing environment for the seeds to decline to 50% viability which indicates that Navua sedge has relatively short-lived persistent seeds. These findings will assist in developing a better understanding of the seedbank dynamics of this invasive species, allowing managers to tactically implement control strategies and prepare budgets for ongoing treatments, and have implications for the duration and success of management programs.

3.
Plants (Basel) ; 10(10)2021 Oct 11.
Article in English | MEDLINE | ID: mdl-34685964

ABSTRACT

Lactuca serriola L. (wild lettuce) is a highly invasive C3 weed in many countries, including Australia, Canada, and the USA. This weed is a severe threat to agricultural systems, especially in crops grown with reduced or no-tillage approaches, which commonly include wheat, cereals and pulses. Owing to the vertical orientation of its leaves in the north-south plane and its root architecture, L. serriola can maintain high water use efficiency under drought conditions, giving it the ability to expand its range under a drying climate. Each plant can produce up to 100,000 seeds which have no primary dormancy and form a short-term seedbank lasting up to three years. Most seedlings emerge in autumn and overwinter as a rosette, with a small flush of emergence in spring depicting staggered germination. Research into control methods for this weed has been performed, and these methods include chemical herbicides applied alone and in combination, the establishment of plant competition, tillage, mowing and bioherbicide. Herbicides can provide effective control when applied in the seedling or rosette stage; however, spring germination is difficult to control, as it skips the rosette stage. Some biotypes are now resistant to ALS inhibitor and synthetic auxins, causing concern regarding using herbicides. A dedicated integrated management plan for 3-4 years is recommended for the control of this troublesome species. This review will explore the biology, ecology, distribution, current control techniques and previous research on this weed, allowing us to make recommendations for its future research and management.

4.
Plants (Basel) ; 10(9)2021 Sep 07.
Article in English | MEDLINE | ID: mdl-34579384

ABSTRACT

Navua sedge (Cyperus aromaticus (Ridley) Mattf. & Kukenth) is an invasive perennial sedge, native to tropical Africa, which is threatening many natural ecosystems and agroecosystems, especially in northern Queensland, Australia. Crop and pasture production have been impacted by Navua sedge and it is also directly causing reductions in dairy and beef production in affected regions. This review documents the biology, ecology and potential management options to minimise the spread and impact of Navua sedge. The weed reproduces both sexually (seeds) and vegetatively (via underground rhizomes). Its tiny seeds can be spread easily via wind, water, vehicles, farm machinery and animals, whilst the rhizomes assist with establishment of dense stands. The CLIMEX model (which uses distribution and climate data in native and novel ranges) indicates that in Australia, Navua sedge has the potential to spread further within Queensland and into the Northern Territory, New South Wales and Victoria. Several management strategies, including mechanical, chemical and agronomic methods, and their integration will have to be used to minimise agricultural production losses caused by Navua sedge, but most of these methods are currently either ineffective or uneconomical when used alone. Other management approaches, including biological control and mycoherbicides, are currently being explored. We conclude that a better understanding of the interaction of its physiological processes, ecological patterns and genetic diversity across a range of conditions found in the invaded and native habitats will help to contribute to and provide more effective integrated management approaches for Navua sedge.

5.
Environ Sci Pollut Res Int ; 27(28): 35859-35869, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32710358

ABSTRACT

In this study, the performance of Datura stramonium, an invasive weed of soybean and solanaceous crops, was examined under different elements of climate change. Experiments conducted in CO2 chambers at ambient CO2 (400 ppm) and elevated CO2 (700 ppm) levels under both well-watered and drought conditions exhibited the fertilization effect of elevated CO2. This was, however, limited by drought. Clearly, growth of D. stramonium will be significantly enhanced by enriched atmospheric CO2 concentration under well-watered conditions, producing taller plants with greater biomass and higher seed output. Glasshouse experiments were conducted to evaluate the effect of different soil moisture regimes (100%, 75%, 50% and 25% water-holding capacity (WHC)) on the growth and fecundity of D. stramonium. Plants grown in 75% WHC had the highest plant height (15.24 cm) and shoot diameter (4.25 mm). The lowest leaf area (305.91 mm2), fresh weight (14.48 g) and dry weight (4.45 g) were observed in 25% WHC conditions. The ability of D. stramonium plants to grow and complete their life cycle with high seed output, even under limited water availability, shows the weedy nature of this species which is well adapted to survive future inhospitable climatic conditions. Radiant heat treatment on the plants indicated that temperatures of 120 °C and above for more than 180 s were enough to kill the plants, suggesting that thermal weeding or wildfires will be adequate to act as a circuit breaker on the D. stramonium invasion cycle, thus allowing other control measures to be engaged for greater control.


Subject(s)
Climate Change , Datura stramonium , Carbon Dioxide , Droughts , Fertility
6.
PLoS One ; 14(6): e0218191, 2019.
Article in English | MEDLINE | ID: mdl-31251746

ABSTRACT

Global temperatures are predicted to increase by 1.5-5.9°C during this century, and this change is likely to impact average rainfall, with predictions that water deficit will perhaps be the most severe threat to sustainable agriculture. In this respect, invasive weeds, which have traits better adapted to drought stress than crops, add to concerns regarding crop sustainability. Lactuca serriola, an aggressive agronomic weed is thought to be a successful weed because of its ability to maintain high water use efficiency under drought conditions. In this study, experiments were conducted to examine the influence of different soil moisture regimes (100%, 75%, 50% and 25% water holding capacity (WHC)) on growth, photosynthetic capacity, leaf biochemistry and reproduction of this species. Soil moisture significantly affected plant's height, stem diameter, number of leaves and biomass. The highest plant height (115.14 cm ± 11.64), shoot diameter (9.4 mm ± 0.18), leaf area (1206.5 mm2 ± 73.29), plant fresh weight (83.1 ± 3.98) and dry weight (22.38 ± 1.24) were recorded at 75% soil moisture content. A fundamental adaptation to drought was observed as plants in the 25% WHC treatment had the highest root: shoot ratio. Soluble sugars and total phenolic content were highest in the 25% WHC treatment and significantly different to 100% WHC which was a response to soil moisture stress to ameliorate the damaging effects of reactive oxygen species produced under stress conditions. Results also indicate that L. serriola can survive and produce seeds under water stress as more than 6000 seeds were produced per plant in all WHC treatments. In this study, there was no significant difference in the seed weight, number of seeds produced and their germination ability. This can have a huge impact on agricultural systems as the species can survive both under low and high soil moisture conditions. We therefore suggest that the demonstrated ability of L. serriola to complete its life cycle and produce biomass and seeds under water stressed conditions leads to the introduction of strategies that minimize weed survival while maximizing irrigation efficiency for the crop. A clear understanding of the ecological and biological characteristics of this weed will help land managers take appropriate control measures to mitigate the effect of this species on economic crop productivity.


Subject(s)
Acclimatization , Asteraceae/growth & development , Photosynthesis , Plant Leaves/growth & development , Plant Weeds/growth & development , Stress, Physiological , Dehydration , Reproduction , Soil
SELECTION OF CITATIONS
SEARCH DETAIL
...