Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 1540, 2022 03 21.
Article in English | MEDLINE | ID: mdl-35314681

ABSTRACT

The bidirectional movement of lysosomes on microtubule tracks regulates their whole-cell spatial arrangement. Arl8b, a small GTP-binding (G) protein, promotes lysosome anterograde trafficking mediated by kinesin-1. Herein, we report an Arl8b effector, RUFY3, which regulates the retrograde transport of lysosomes. We show that RUFY3 interacts with the JIP4-dynein-dynactin complex and facilitates Arl8b association with the retrograde motor complex. Accordingly, RUFY3 knockdown disrupts the positioning of Arl8b-positive endosomes and reduces Arl8b colocalization with Rab7-marked late endosomal compartments. Moreover, we find that RUFY3 regulates nutrient-dependent lysosome distribution, although autophagosome-lysosome fusion and autophagic cargo degradation are not impaired upon RUFY3 depletion. Interestingly, lysosome size is significantly reduced in RUFY3 depleted cells, which could be rescued by inhibition of the lysosome reformation regulatory factor PIKFYVE. These findings suggest a model in which the perinuclear cloud arrangement of lysosomes regulates both the positioning and size of these proteolytic compartments.


Subject(s)
Dyneins , Lysosomes , ADP-Ribosylation Factors/genetics , ADP-Ribosylation Factors/metabolism , Cytoskeletal Proteins/metabolism , Dyneins/metabolism , Endosomes/metabolism , HeLa Cells , Humans , Lysosomes/metabolism , Protein Transport/physiology
2.
PLoS Negl Trop Dis ; 12(6): e0006575, 2018 06.
Article in English | MEDLINE | ID: mdl-29897900

ABSTRACT

BACKGROUND: Aminoacyl tRNA synthetases are central enzymes required for protein synthesis. These enzymes are the known drug targets in bacteria and fungi. Here, we for the first time report the functional characterization of threonyl tRNA synthetase (LdThrRS) of Leishmania donovani, a protozoan parasite, the primary causative agent of visceral leishmaniasis. METHODOLOGY: Recombinant LdThrRS (rLdThrRS) was expressed in E. coli and purified. The kinetic parameters for rLdThrRS were determined. The subcellular localization of LdThrRS was done by immunofluorescence analysis. Heterozygous mutants of LdThrRS were generated in Leishmania promastigotes. These genetically manipulated parasites were checked for their proliferation, virulence, aminoacylation activity and sensitivity to the known ThrRS inhibitor, borrelidin. An in silico generated structural model of L. donovani ThrRS was compared to that of human. CONCLUSIONS: Recombinant LdThrRS displayed aminoacylation activity, and the protein is possibly localized to both the cytosol and mitochondria. The comparison of the 3D-model of LdThrRS to human ThrRS displayed considerable similarity. Heterozygous parasites showed restrictive growth phenotype and had attenuated infectivity. These heterozygous parasites were more susceptible to inhibition by borrelidin. Several attempts to obtain ThrRS homozygous null mutants were not successful, indicating its essentiality for the Leishmania parasite. Borrelidin showed a strong affinity for LdThrRS (KD: 0.04 µM) and was effective in inhibiting the aminoacylation activity of the rLdThrRS (IC50: 0.06 µM). Borrelidin inhibited the promastigotes (IC50: 21 µM) stage of parasites. Our data shows that LdThrRS is essential for L. donovani survival and is likely to bind with small drug-like molecules with strong affinity, thus making it a potential target for drug discovery efforts.


Subject(s)
Leishmania donovani/enzymology , Leishmaniasis, Visceral/parasitology , Threonine-tRNA Ligase/genetics , Drug Delivery Systems , Escherichia coli/enzymology , Escherichia coli/genetics , Fatty Alcohols/pharmacology , Gene Expression , Humans , Leishmania donovani/drug effects , Leishmania donovani/genetics , Leishmania donovani/pathogenicity , Organisms, Genetically Modified , Phylogeny , Protein Domains , Protein Transport , Protozoan Proteins/antagonists & inhibitors , Protozoan Proteins/genetics , Protozoan Proteins/isolation & purification , Protozoan Proteins/metabolism , Recombinant Proteins , Sequence Deletion , Threonine-tRNA Ligase/antagonists & inhibitors , Threonine-tRNA Ligase/isolation & purification , Threonine-tRNA Ligase/metabolism
3.
mSphere ; 2(4)2017.
Article in English | MEDLINE | ID: mdl-28875178

ABSTRACT

Leishmania donovani is a protozoan parasite that causes visceral leishmaniasis. Increasing resistance and severe side effects of existing drugs have led to the need to identify new chemotherapeutic targets. Aminoacyl-tRNA synthetases (aaRSs) are ubiquitous and are required for protein synthesis. aaRSs are known drug targets for bacterial and fungal pathogens. Here, we have characterized and evaluated the essentiality of L. donovani lysyl-tRNA synthetase (LdLysRS). Two different coding sequences for lysyl-tRNA synthetases are annotated in the Leishmania genome database. LdLysRS-1 (LdBPK_150270.1), located on chromosome 15, is closer to apicomplexans and eukaryotes, whereas LdLysRS-2 (LdBPK_300130.1), present on chromosome 30, is closer to bacteria. In the present study, we have characterized LdLysRS-1. Recombinant LdLysRS-1 displayed aminoacylation activity, and the protein localized to the cytosol. The LdLysRS-1 heterozygous mutants had a restrictive growth phenotype and attenuated infectivity. LdLysRS-1 appears to be an essential gene, as a chromosomal knockout of LdLysRS-1 could be generated when the gene was provided on a rescuing plasmid. Cladosporin, a fungal secondary metabolite and a known inhibitor of LysRS, was more potent against promastigotes (50% inhibitory concentration [IC50], 4.19 µM) and intracellular amastigotes (IC50, 1.09 µM) than were isomers of cladosporin (3-epi-isocladosporin and isocladosporin). These compounds exhibited low toxicity to mammalian cells. The specificity of inhibition of parasite growth caused by these inhibitors was further assessed using LdLysRS-1 heterozygous mutant strains and rescue mutant promastigotes. These inhibitors inhibited the aminoacylation activity of recombinant LdLysRS. Our data provide a framework for the development of a new class of drugs against this parasite. IMPORTANCE Aminoacyl-tRNA synthetases are housekeeping enzymes essential for protein translation, providing charged tRNAs for the proper construction of peptide chains. These enzymes provide raw materials for protein translation and also ensure fidelity of translation. L. donovani is a protozoan parasite that causes visceral leishmaniasis. It is a continuously proliferating parasite that depends heavily on efficient protein translation. Lysyl-tRNA synthetase is one of the aaRSs which charges lysine to its cognate tRNA. Two different coding sequences for lysyl-tRNA synthetases (LdLysRS) are present in this parasite. LdLysRS-1 is closer to apicomplexans and eukaryotes, whereas LdLysRS-2 is closer to bacteria. Here, we have characterized LdLysRS-1 of L. donovani. LdLysRS-1 appears to be an essential gene, as the chromosomal null mutants did not survive. The heterozygous mutants showed slower growth kinetics and exhibited attenuated virulence. This study also provides a platform to explore LdLysRS-1 as a potential drug target.

SELECTION OF CITATIONS
SEARCH DETAIL
...