Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 8: 2203, 2017.
Article in English | MEDLINE | ID: mdl-29170659

ABSTRACT

Microorganisms influence the chemical and physical properties of subsurface environments and thus represent an important control on the fate and environmental impact of CO2 that leaks into aquifers from deep storage reservoirs. How leakage will influence microbial populations over long time scales is largely unknown. This study uses natural analog sites to investigate the long-term impact of CO2 leakage from underground storage sites on subsurface biogeochemistry. We considered two sites with elevated CO2 levels (sample groups I and II) and one control site with low CO2 content (group III). Samples from sites with elevated CO2 had pH ranging from 6.2 to 4.5 and samples from the low-CO2 control group had pH ranging from 7.3 to 6.2. Solute concentrations were relatively low for samples from the control group and group I but high for samples from group II, reflecting varying degrees of water-rock interaction. Microbial communities were analyzed through clone library and MiSeq sequencing. Each 16S rRNA analysis identified various bacteria, methane-producing archaea, and ammonia-oxidizing archaea. Both bacterial and archaeal diversities were low in groundwater with high CO2 content and community compositions between the groups were also clearly different. In group II samples, sequences classified in groups capable of methanogenesis, metal reduction, and nitrate reduction had higher relative abundance in samples with relative high methane, iron, and manganese concentrations and low nitrate levels. Sequences close to Comamonadaceae were abundant in group I, while the taxa related to methanogens, Nitrospirae, and Anaerolineaceae were predominant in group II. Our findings provide insight into subsurface biogeochemical reactions that influence the carbon budget of the system including carbon fixation, carbon trapping, and CO2 conversion to methane. The results also suggest that monitoring groundwater microbial community can be a potential tool for tracking CO2 leakage from geologic storage sites.

2.
Water Res ; 44(4): 1150-7, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20018338

ABSTRACT

Basic oxygen furnace (BOF) slag media were studied as a potential treatment material in on-site sanitation systems. Batch and column studies were conducted to evaluate attenuation of the bacteriophage PR772 and 0.190 microm diameter microspheres by BOF media, and to delineate the relative contributions of two principle processes of virus attenuation: inactivation and attachment. In the batch studies, conducted at 4 degrees C, substantial inactivation of PR772 did not occur in the pH 7.6 and 9.5 suspensions. At pH 11.4, bimodal inactivation of PR772 was observed, at an initial rate of 2.1 log C/C(0) day(-1) for the first two days, followed by a much slower rate of 0.124 log C/C(0) day(-1) over the following 10 days. Two column studies were conducted at 4 degrees C at a flow rate of 1 pore volume day(-1) using two slag sources (Stelco, Ontario; Tubarão, Brazil) combined with sand and pea gravel. In both column experiments, the effluent microsphere concentration approached input concentrations over time (reductions of 0.1-0.2 log C/C(0)), suggesting attachment processes for microspheres were negligible. Removal of PR772 virus was more pronounced both during the early stages of the experiments, but also after longer transport times (0.5-1.0 log C/C(0)). PR772 reduction appeared to be primarily as a result of virus inactivation in response to the elevated pH conditions generated by the BOF mixture (10.6-11.4). On-site sanitation systems using BOF media should be designed to maintain sufficient contact time between the BOF media and the wastewater to allow sufficient residence time of pathogens at elevated pH conditions.


Subject(s)
Bacteriophages/physiology , Sanitation/methods , Sewage/virology , Waste Disposal, Fluid/methods , Bacteriophages/chemistry , Bacteriophages/isolation & purification , Environmental Restoration and Remediation , Filtration/methods , Hydrogen-Ion Concentration , Kinetics , Microspheres , Porosity , Sewage/chemistry , Virus Attachment , Virus Inactivation
3.
J Contam Hydrol ; 107(3-4): 114-27, 2009 Jul 21.
Article in English | MEDLINE | ID: mdl-19524319

ABSTRACT

Hydrochemical and multivariate statistical interpretations of 16 physicochemical parameters of 45 groundwater samples from a riverside alluvial aquifer underneath an agricultural area in Osong, central Korea, were performed in this study to understand the spatial controls of nitrate concentrations in terms of biogeochemical processes occurring near oxbow lakes within a fluvial plain. Nitrate concentrations in groundwater showed a large variability from 0.1 to 190.6 mg/L (mean=35.0 mg/L) with significantly lower values near oxbow lakes. The evaluation of hydrochemical data indicated that the groundwater chemistry (especially, degree of nitrate contamination) is mainly controlled by two competing processes: 1) agricultural contamination and 2) redox processes. In addition, results of factorial kriging, consisting of two steps (i.e., co-regionalization and factor analysis), reliably showed a spatial control of the concentrations of nitrate and other redox-sensitive species; in particular, significant denitrification was observed restrictedly near oxbow lakes. The results of this study indicate that sub-oxic conditions in an alluvial groundwater system are developed geologically and geochemically in and near oxbow lakes, which can effectively enhance the natural attenuation of nitrate before the groundwater discharges to nearby streams. This study also demonstrates the usefulness of multivariate statistical analysis in groundwater study as a supplementary tool for interpretation of complex hydrochemical data sets.


Subject(s)
Fresh Water/chemistry , Models, Statistical , Nitrates/chemistry , Water Pollutants, Chemical , Environmental Monitoring/methods , Korea , Water Movements
4.
J Contam Hydrol ; 101(1-4): 42-52, 2008 Oct 23.
Article in English | MEDLINE | ID: mdl-18725171

ABSTRACT

Hydrogeologic and hydrochemical data for subway tunnel seepage waters in Seoul (Republic of Korea) were examined to understand the effect of underground tunnels on the degradation of urban groundwater. A very large quantity of groundwater (up to 63 million m3 year(-1)) is discharged into subway tunnels with a total length of 287 km, resulting in a significant drop of the local groundwater table and the abandonment of groundwater wells. For the tunnel seepage water samples (n = 72) collected from 43 subway stations, at least one parameter among pathogenic microbes (total coliform, heterotrophic bacteria), dissolved Mn and Fe, NH4+, NO3(-), turbidity, and color exceeded the Korean Drinking Water Standards. Locally, tunnel seepage water was enriched in dissolved Mn (avg. 0.70 mg L(-1), max. 5.58 mg L(-1)), in addition to dissolved Fe, NH4+, and pathogenic microbes, likely due to significant inflow of sewage water from broken or leaking sewer pipes. Geochemical modeling of redox reactions was conducted to simulate the characteristic hydrochemistry of subway tunnel seepage. The results show that variations in the reducing conditions occur in urban groundwater, dependent upon the amount of organic matter-rich municipal sewage contaminating the aquifer. The organic matter facilitates the reduction and dissolution of Mn- and Fe-bearing solids in aquifers and/or tunnel construction materials, resulting in the successive increase of dissolved Mn and Fe. The present study clearly demonstrates that locally significant deterioration of urban groundwater is caused by a series of interlinked hydrogeologic and hydrochemical changes induced by underground tunnels.


Subject(s)
Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Water Supply , Buffers , Chemistry/methods , Geology/methods , Iron/analysis , Korea , Manganese/analysis , Oxidation-Reduction , Railroads , Water/analysis , Water Microbiology , Water Purification
5.
Water Res ; 42(6-7): 1431-40, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18082242

ABSTRACT

Fluorescent microspheres are increasingly used in environmental studies to evaluate threats of viral and bacterial pathogens in drinking water and to investigate colloid-facilitated contaminant transport. A commonly accepted technique for the enumeration of viruses, bacteria, and virus- and bacteria-sized particles by microscopy involves a field-of-view (field) approach to estimate concentration. Few studies have focused on those factors that are most important in ensuring precise and accurate measures of concentration. Microsphere counts in suspensions of artificial groundwater and deionized water were contrasted in this study to gain a greater understanding of the effect of ionic strength and the presence of precipitates in groundwater matrices that can bias microsphere enumerations. To investigate microsphere enumeration with minimal bias from other factors, a commonly used standard method was used to prepare slides and enumerate microspheres, with particular care to randomly select fields for counting. A factorial experiment evaluated two factors, (1) the density of microspheres in each field and (2) the number of counts in an enumeration. Two parameters, relative standard deviation and percent error, were used to assess methodological precision and accuracy. Visual observations of the slides indicated that some biases, such as undulation in the filter membrane or bubble entrained in the mounting medium, create biases in microsphere enumeration. Additional biases were introduced by the presence of precipitates that form in artificial groundwater saturated with calcite. Microsphere density was found to be critical for ensuring methodological precision, whereas the total number of microspheres counted was essential to ensuring methodological accuracy. The results suggested that to minimize variability using the field approach, the enumeration of at least 350 microspheres and 25-40 microspheresfield (-1) is necessary.


Subject(s)
Bacteria/isolation & purification , Microscopy, Fluorescence/methods , Viruses/isolation & purification , Colony Count, Microbial , Microspheres , Reproducibility of Results
6.
Sci Total Environ ; 385(1-3): 272-83, 2007 Oct 15.
Article in English | MEDLINE | ID: mdl-17655916

ABSTRACT

High fluoride concentrations (median=4.4 mg/L) in deep bedrock groundwater of South Korea prevent the usage of it as a drinking water source. The hydrogeochemistry of deep thermal groundwaters (N=377) in diverse bedrocks has been studied in order to evaluate the geologic and geochemical controls on fluoride concentrations in groundwater. The groundwater samples were clustered geologically, and the average and median concentrations of fluoride were compared by the Mann-Whitney U test. The order of median fluoride concentration with respect to geology is as follows: metamorphic rocks> or =granitoids > or =complex rock>>volcanic rocks> or =sedimentary rocks. This result indicates that the geological source of fluoride in groundwater is related to the mineral composition of metamorphic rocks and granitoids. With respect to groundwater chemistry, the fluoride concentration was highest in Na-HCO3 type groundwater and lowest in Ca-HCO3 type groundwater. Ionic relationships also imply that the geochemical behavior of fluoride in groundwater is related to the geochemical process releasing Na and removing Ca ions. The thermodynamic relationship between the activities of Ca and F indicates that fluoride concentration is controlled by the equilibrium of fluorite (CaF2). In other words, the upper limits of fluoride concentration are determined by the Ca ion; i.e., Ca concentrations play a crucial role in fluoride behavior in deep thermal groundwater. The result of this study suggests that the high fluoride in groundwater originates from geological sources and fluoride can be removed by fluorite precipitation when high Ca concentration is maintained. This provides a basis for a proper management plan to develop the deep thermal groundwater and for treatment of high fluoride groundwater frequently found in South Korea.


Subject(s)
Fluorine/analysis , Fresh Water/chemistry , Geologic Sediments/chemistry , Water Pollutants, Chemical/analysis , Korea , Thermodynamics , Water Purification , Water Supply/standards
7.
Chemosphere ; 55(3): 369-78, 2004 Apr.
Article in English | MEDLINE | ID: mdl-14987935

ABSTRACT

Alluvial groundwaters in the area where intensive agricultural activity takes place were geochemically investigated to evaluate factors regulating groundwater quality of alluvial aquifers. For this study, 55 groundwater samples were taken from the uniformly distributed irrigation wells and were classified into three distinct groups according to their geochemical characteristics. This study reveals that the groundwater quality and the geochemical characteristics of the clustered groups are consistent with the geology of the area. The samples collected from the area where a thick silt bed overlies the sand aquifer are clustered into Group II and show water quality that is only slightly affected by the contaminants originating from the land surface. However, groundwaters of this group are very high in Fe and Mn levels due to strong anoxic condition caused by the thick silt bed. In contrast, Group I shows water quality largely influenced by agricultural activities (i.e., fertilization, liming) and occurs in the area adjacent to the river where the silt bed is not observed and the sand aquifer is covered with sandy soils. Group III mostly occurs in the upgradient of Group I where a thin, silty soil covers the sand aquifer. In overall, the results show that the clustered groups closely reflect the groundwater susceptibility to the contaminants originated from the land surface. This suggests that groundwater clustering based on water chemistry could be applied to the contamination susceptibility assessment for groundwaters in the agricultural area.


Subject(s)
Agriculture , Environmental Monitoring , Fresh Water/analysis , Water Movements , Water Pollution/analysis , Geological Phenomena , Geology , Iron , Korea , Manganese
8.
Environ Int ; 30(1): 73-85, 2004 Mar.
Article in English | MEDLINE | ID: mdl-14664867

ABSTRACT

The spatial variations in the chemistry of first- and second-order stream waters (N = 65) were investigated in the easterly bound of Seoul in order to assess the effects of urban air pollution on surface water chemistry. The sulfate (SO4(2-)) was high (range 3.9-17.8 mg l(-1), mean 11.8 mg l(-1)) within 30 km away from the center of Seoul, compared to the levels (range 1.1-7.7 mg l(-1), mean 4.3 mg l(-1)) observed in remote areas (30-70 km away). Both graphical examination and statistical evaluation (variogram) of sulfate concentration data consistently showed the decrease of sulfate concentration with increasing distance. The results of mass balance modeling also indicate that the concentrations of SO4(2-), Cl- and Na+ may be affected mainly by dry/wet deposition. However, the spatial variations of major cations such as Ca2+ and Na+ are well explained by the reaction of rainwater with diverse rocks in the watercourse. The water type was found to change from Ca(-Na)-SO4) type to Ca(-a)-HCO3 type with the increasing distance. It is thus inferred that the pollutants like SO2 emitted from strong man-made source areas of Seoul are transported to the considerable distance (at least 30 km away) by westerlies and that such mechanism may lead to the changes of the anion composition in surface water. In the remote area (> 30 km away from Seoul), the stream water chemistry appears to be influenced more effectively by the weathering of rock-forming minerals.


Subject(s)
Air Pollutants/analysis , Fresh Water/chemistry , Geologic Sediments/chemistry , Water Pollutants, Chemical/analysis , Environmental Monitoring , Korea , Models, Theoretical , Water Movements
SELECTION OF CITATIONS
SEARCH DETAIL
...