Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 21(16)2021 Aug 21.
Article in English | MEDLINE | ID: mdl-34451080

ABSTRACT

This paper presents a small-sized, low-power gas sensor system combining a high-electron-mobility transistor (HEMT) device and readout integrated circuit (ROIC). Using a semiconductor-based HEMT as a gas-sensing device, it is possible to secure high sensitivity, reduced complexity, low power, and small size of the ROIC sensor system. Unlike existing gas sensors comprising only HEMT elements, the proposed sensor system has both an ROIC and a digital controller and can control sensor operation through a simple calibration process with digital signal processing while maintaining constant performance despite variations. The ROIC mainly consists of a transimpedance amplifier (TIA), a negative-voltage generator, and an analog-to-digital converter (ADC) and is designed to match a minimum target detection unit of 1 ppm for hydrogen. The prototype ROIC for the HEMT presented herein was implemented in a 0.18 µm complementary metal-oxide-semiconductor (CMOS) process. The total measured power consumption and detection unit of the proposed ROIC for hydrogen gas were 3.1 mW and 2.6 ppm, respectively.

2.
Sensors (Basel) ; 20(18)2020 09 16.
Article in English | MEDLINE | ID: mdl-32947789

ABSTRACT

A CMOS (Complementary metal-oxide-semiconductor) Hall sensor with low power consumption and simple structure is introduced. The tiny magnetic signal from Hall device could be detected by a high-resolution delta-sigma ADC in presence of offset and flickering noise. Also, the offset as well as the flickering noise are effectively suppressed by the current spinning technique combined with double sampling switches of the ADC. The double sampling scheme of the ADC reduces the operating frequency and helps to reduce the power consumption. The prototype Hall sensor is fabricated in a 0.18-µm CMOS process, and the measurement shows detection range of ±150 mT and sensitivity of 110 µV/mT. The size of active area is 0.7 mm2, and the total power consumption is 4.9 mW. The proposed system is advantageous not only for low power consumption, but also for small sensor size due to its simplicity.

SELECTION OF CITATIONS
SEARCH DETAIL
...