Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 14(45): 50956-50965, 2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36327306

ABSTRACT

Developing a method for fabricating high-efficient and low-cost fuel cells is imperative for commercializing polymer electrolyte membrane (PEM) fuel cells (FCs). This study introduces a mechanical and chemical modification technique using the oxygen plasma irradiation process for hydrocarbon-based (HC) PEM. The oxygen functional groups were introduced on the HC-PEM surface through the plasma process in the controlled area, and microsized structures were formed. The modified membrane was incorporated with plasma-treated electrodes, improving the adhesive force between the HC-PEM and the electrode. The decal transfer was enabled at low temperatures and pressures, and the interfacial resistance in the membrane-electrode assembly (MEA) was reduced. Furthermore, the micropillar structured electrode configuration significantly reduced the oxygen transport resistance in the MEA. Various diagnostic techniques were conducted to find out the effects of the membrane surface modification, interface adhesion, and mass transport, such as physical characterizations, mechanical stress tests, and diverse electrochemical measurements.

2.
Membranes (Basel) ; 12(11)2022 Oct 29.
Article in English | MEDLINE | ID: mdl-36363628

ABSTRACT

For further commercializing proton-exchange membrane fuel cells, it is crucial to attain long-term durability while achieving high performance. In this study, a strategy for modifying commercial Nafion membranes by introducing ultrathin multiwalled carbon nanotubes (MWCNTs)/CeO2 layers on both sides of the membrane was developed to construct a mechanically and chemically reinforced membrane electrode assembly. The dispersion properties of the MWCNTs were greatly improved through chemical modification with acid treatment, and the mixed solution of MWCNTs/CeO2 was uniformly prepared through a high-energy ball-milling process. By employing a spray-coating technique, the ultrathin MWCNTs/CeO2 layers were introduced onto the membrane surfaces without any agglomeration problem because the solvent rapidly evaporated during the layer-by-layer stacking process. These ultrathin and highly dispersed MWCNTs/CeO2 layers effectively reinforced the mechanical properties and chemical durability of the membrane while minimizing the performance drop despite their non-ion-conducting properties. The characteristics of the MWCNTs/CeO2 layers and the reinforced Nafion membrane were investigated using various in situ and ex situ measurement techniques; in addition, electrochemical measurements for fuel cells were conducted.

3.
ACS Nano ; 15(7): 11218-11230, 2021 Jul 27.
Article in English | MEDLINE | ID: mdl-34143611

ABSTRACT

Oxygen-based electrocatalysis is an integral aspect of a clean and sustainable energy conversion/storage system. The development of economic bifunctional electrocatalysts with high activity and durability during reversible reactions remains a great challenge. The tailored porous structure and separately presented active sites for oxygen reduction and oxygen evolution reactions (ORR and OER) without mutual interference are most crucial for achieving desired bifunctional catalysts. Here, we report a hybrid composed of sheath-core cobalt oxynitride (CoOx@CoNy) nanorods grown perpendicularly on N-doped carbon nanofiber (NCNF). The brush-like CoOx@CoNy nanorods, composed of metallic Co4N cores and oxidized surfaces, exhibit excellent OER activity (E = 1.69 V at 10 mA cm-2) in an alkaline medium. Although pristine NCNF or CoOx@CoNy alone had poor catalytic activity in the ORR, the hybrid showed dramatically enhanced ORR performance (E = 0.78 V at -3 mA cm-2). The experimental results coupled with a density functional theory (DFT) simulation confirmed that the broad surface area of the CoOx@CoNy nanorods with an oxidized skin layer boosts the catalytic OER, while the facile adsorption of ORR intermediates and a rapid interfacial charge transfer occur at the interface between the CoOx@CoNy nanorods and the electrically conductive NCNF. Furthermore, it was found that the independent catalytic active sites in the CoOx@CoNy/NCNF catalyst are continuously regenerated and sustained without mutual interference during the round-trip ORR/OER, affording stable operation of Zn-air batteries.

4.
ACS Omega ; 6(15): 10168-10179, 2021 Apr 20.
Article in English | MEDLINE | ID: mdl-34056171

ABSTRACT

Anion exchange membranes (AEMs) with good alkaline stability and ion conductivity are fabricated by incorporating quaternary ammonium-modified silica into quaternary ammonium-functionalized poly(2,6-dimethyl-1,4-phenylene oxide) (QPPO). Quaternary ammonium with a long alkyl chain is chemically grafted to the silica in situ during synthesis. Glycidyltrimethylammoniumchloride functionalization on silica (QSiO2) is characterized by Fourier transform infrared and transmission electron microscopic techniques. The QPPO/QSiO2 membrane having an ion exchange capacity of 3.21 meq·g-1 exhibits the maximum hydration number (λ = 11.15) and highest hydroxide ion conductivity of 45.08 × 10-2 S cm-1 at 80 °C. In addition to the high ion conductivity, AEMs also exhibit good alkaline stability, and the conductivity retention of the QPPO/QSiO2-3 membrane after 1200 h of exposure in 1 M potassium hydroxide at room temperature is about 91% ascribed to the steric hindrance offered by the grafted long glycidyl trimethylammonium chain in QSiO2. The application of the QPPO/QSiO2-3 membrane to an alkaline fuel cell can yield a peak power density of 142 mW cm-2 at a current density of 323 mA cm-2 and 0.44 V, which is higher than those of commercially available FAA-3-50 Fumatech AEM (OCV: 0.91 V; maximum power density: 114 mW cm-2 at current density: 266 mA cm-2 and 0.43 V). These membranes provide valuable insights on future directions for advanced AEM development for fuel cells.

5.
Polymers (Basel) ; 13(5)2021 Feb 25.
Article in English | MEDLINE | ID: mdl-33668920

ABSTRACT

Polystyrene-based polymers with variable molecular weights are prepared by radical polymerization of styrene. Polystyrene is grafted with bromo-alkyl chains of different lengths through Friedel-Crafts acylation and quaternized to afford a series of hydroxide-ion-conducting ionomers for the catalyst binder for the membrane electrode assembly in anion-exchange membrane fuel cells (AEMFCs). Structural analyses reveal that the molecular weight of the polystyrene backbone ranges from 10,000 to 63,000 g mol-1, while the ion exchange capacity of quaternary-ammonium-group-bearing ionomers ranges from 1.44 to 1.74 mmol g-1. The performance of AEMFCs constructed using the prepared electrode ionomers is affected by several ionomer properties, and a maximal power density of 407 mW cm-2 and a durability exceeding that of a reference cell with a commercially available ionomer are achieved under optimal conditions. Thus, the developed approach is concluded to be well suited for the fabrication of next-generation electrode ionomers for high-performance AEMFCs.

6.
ACS Appl Mater Interfaces ; 11(38): 34805-34811, 2019 Sep 25.
Article in English | MEDLINE | ID: mdl-31469540

ABSTRACT

The recent development of ultrathin anion exchange membranes and optimization of their operating conditions have significantly enhanced the performance of alkaline-membrane fuel cells (AMFCs); however, the effects of the membrane/electrode interface structure on the AMFC performance have not been seriously investigated thus far. Herein, we report on a high-performance AMFC system with a membrane/electrode interface of novel design. Commercially available membranes are modified in the form of well-aligned line arrays of both the anode and cathode sides by means of a solvent-assisted molding technique and sandwich-like assembly of the membrane and polydimethylsiloxane molds. Upon incorporating the patterned membranes into a single-cell system, we observe a significantly enhanced performance of up to ∼35% compared with that of the reference membrane. The enlarged interface area and reduced membrane thickness from the line-patterned membrane/electrode interface result in improved water management, reduced ohmic resistance, and effective utilization of the catalyst. We believe that our findings can significantly contribute further advancements in AMFCs.

7.
ACS Appl Mater Interfaces ; 10(48): 41279-41292, 2018 Dec 05.
Article in English | MEDLINE | ID: mdl-30380830

ABSTRACT

Poly(2,6-dimethyl-1,4-phenylene oxide)s (PPOs)-based anion exchange membranes (AEMs) with four of the most widely investigated head groups were prepared. Through a combination of experimental and simulation approaches, the effects of the different types of head groups on the properties of the AEMs, including hydroxide conductivity, water content, physicochemical stability, and fuel cell device performance were fully explored. Unlike other studies, in which the conductivity was mostly investigated in liquid water, the conductivity of the PPO-based AEMs in 95% relative humidity (RH) conditions as well as in liquid water was investigated. The conductivity trend in 95% RH condition was different from that in liquid water but corresponded well with the actual cell performance trend observed, suggesting that the AEM fuel cell performance under in situ cell conditions (95% RH, 60 °C, H2/O2) is more closely related to the conductivity measured ex situ under 95% RH conditions (60 °C) than in liquid water. On the basis of the conductivity data and molecular simulation results, it was concluded that the predominant hydroxide ion-conducting mechanism in liquid water differs from that in the operating fuel cell environment, where the ionomers become hydrated only as a result of water vapor transported into the cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...