Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurol ; 270(5): 2743-2755, 2023 May.
Article in English | MEDLINE | ID: mdl-36856847

ABSTRACT

BACKGROUND AND OBJECTIVES: As the efficacy of current diagnostic methods for myasthenia gravis (MG) remains suboptimal, there is ongoing interest in developing more effective diagnostic models. As oculomotor fatigability is one of the most common and diagnostic symptoms in MG, we aimed to investigate whether quantitative saccadic and smooth-pursuit fatigability analyses with video-oculography (VOG) are useful for diagnosis of MG. METHODS: A convenience cohort of 46 MG patients was recruited prospectively, including 35 with ocular and 11 with generalized MG (mean age, 50.9 ± 14.5 years; 17 females); 24 healthy controls (HCs) (mean age, 50.6 ± 16.3 years; 13 females) also were enrolled. Seventy-five repetitive saccades and smooth pursuits were recorded in ranges of 20° (horizontal plane) and 15° (vertical plane) using a three-dimensional VOG system. Based on the oculomotor range of the second saccade and smooth pursuit and the mean ranges of the last five of each, the estimated decrements (%) reflecting oculomotor fatigability were calculated. RESULTS: The baseline oculomotor ranges did not show significant difference between the MG and HCs groups. However, following repetitive saccades and pursuits, the oculomotor ranges were decreased substantially during the last five cycles compared to baseline in the MG group. No such decrements were observed in the HC group (p < 0.01, Mann-Whitney U test). Receiver operating characteristic (ROC) analysis revealed that repetitive vertical saccades yielded the best differentiation between the MG and HC groups, with a sensitivity of 78.3% and specificity of 95.8% when using a decrement with an amplitude of 6.4% as the cutoff. CONCLUSION: This study presents an objective and reproducible method for measuring decrements of oculomotor ranges after repetitive saccadic and pursuit movements. Quantification of oculomotor fatigability using VOG could be a sensitive and specific diagnostic tool for MG and allows easy, cost-effective, accurate, and non-invasive measurements. CLASSIFICATION OF EVIDENCE: This study provides class III evidence that VOG-based quantification of saccadic and pursuit fatigability accurately identifies patients with MG.


Subject(s)
Myasthenia Gravis , Saccades , Female , Humans , Adult , Middle Aged , Aged , Pursuit, Smooth , Eye Movements , Myasthenia Gravis/diagnosis , ROC Curve , Fatigue/diagnosis , Fatigue/etiology
2.
J Cereb Blood Flow Metab ; 37(8): 3015-3026, 2017 Aug.
Article in English | MEDLINE | ID: mdl-27909266

ABSTRACT

Despite the efficacy of neuroprotective approaches in animal models of stroke, their translation has so far failed from bench to bedside. One reason is presumed to be a low quality of preclinical study design, leading to bias and a low a priori power. In this study, we propose that the key read-out of experimental stroke studies, the volume of the ischemic damage as commonly measured by free-handed planimetry of TTC-stained brain sections, is subject to an unrecognized low inter-rater and test-retest reliability with strong implications for statistical power and bias. As an alternative approach, we suggest a simple, open-source, software-assisted method, taking advantage of automatic-thresholding techniques. The validity and the improvement of reliability by an automated method to tMCAO infarct volumetry are demonstrated. In addition, we show the probable consequences of increased reliability for precision, p-values, effect inflation, and power calculation, exemplified by a systematic analysis of experimental stroke studies published in the year 2015. Our study reveals an underappreciated quality problem in translational stroke research and suggests that software-assisted infarct volumetry might help to improve reproducibility and therefore the robustness of bench to bedside translation.


Subject(s)
Brain Infarction/diagnostic imaging , Brain/diagnostic imaging , Image Processing, Computer-Assisted/methods , Ischemic Attack, Transient/diagnostic imaging , Software , Animals , Brain/blood supply , Brain Infarction/etiology , Disease Models, Animal , Ischemic Attack, Transient/complications , Male , Mice, Inbred C57BL , Reproducibility of Results , Sensitivity and Specificity , Translational Research, Biomedical
SELECTION OF CITATIONS
SEARCH DETAIL
...