Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 14880, 2023 09 09.
Article in English | MEDLINE | ID: mdl-37689740

ABSTRACT

The number of non-accidental deaths and heat-related illnesses due to the co-occurrence of heatwaves and COVID-19 has been identified to estimate compound health impacts between two risks. We have analyzed data from historical years (2013-2019) to calculate the baseline values of the number of non-accidental deaths and heat-related illness patients from May to September using a quasi-Poisson generalized linear model and compared them to data from 2020 in Korea. We also assessed the relative risk and absolute cumulative number of non-accidental deaths and heat-related illnesses in the summer of 2020 in Seoul, Daegu, and Gyeongnam region of Korea. In the Summer of 2020, Korea experienced 0.8% of non-accidental excess deaths, with the highest in August, and 46% of reduction was observed in heat-related throughout the study period, except in Daegu, where excess of heat-related illness occurred in August. The relative risk (RR) of non-accidental deaths at 33.1 °C, was 1.00 (CI 0.99-1.01) and 1.04 (CI 1.02-1.07) in 2013-2019 and 2020, respectively. The RR of heat-related illness at 33.1 °C, was 1.44 (CI 1.42-1.45) and 1.59 (CI 1.54-1.64) in 2013-2019 and 2020, respectively. The absolute cumulative trends of non-accidental deaths and heat-related illnesses were similar in the three regions, indicating increased non-accidental deaths and decreased heat-related illnesses at similar temperatures in 2020. During the COVID-19 pandemic, the fear of infection by the virus and the limited access to healthcare services led to changes in health-seeking behaviors. These results indicate social distancing could have had adverse impacts on other health conditions. A comprehensive health risk assessment is important when facing simultaneous risks, such as heatwaves and pandemics, in the implementation of effective countermeasures.


Subject(s)
COVID-19 , Humans , Animals , COVID-19/epidemiology , Pandemics , Infrared Rays , Estrus , Seoul
2.
Sci Rep ; 13(1): 922, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36650176

ABSTRACT

This study compared the relative risks of heat days on mortalities by vulnerable groups (elderly, single-person households, less-educated) in the past decade (1999-2008) and the recent decade (2009-2018) in four cities, Seoul, Incheon, Daegu, and Gwangju, in Korea. It has been known that the health impacts of heatwaves have gradually decreased over time due to socio-economic development, climate adaptation, and acclimatization. Contrary to general perception, we found that the recent relative risk of mortality caused by heat days has increased among vulnerable groups. It may associate with recent increasing trends of severe heat days due to climate change. The increasing relative risk was more significant in single-person households and less-educated groups than in the elderly. It implies that the impacts of climate change-induced severe heat days have been and will be concentrated on vulnerable groups. It suggests that social polarization and social isolation should be addressed to reduce heatwave impacts. Furthermore, this study shows the necessity of customized heatwave policies, which consider the characteristics of vulnerable groups.


Subject(s)
Climate Change , Hot Temperature , Humans , Aged , Temperature , Korea , Cities , Seoul
3.
Sci Rep ; 11(1): 18512, 2021 09 16.
Article in English | MEDLINE | ID: mdl-34531418

ABSTRACT

This study analyzes how climate change affects the economy, society, and environment in South Korea. Then, the study explores the ways to strengthen capabilities that can alleviate climate change impacts. To find them, the study employs a system dynamics simulation method and builds a model with several sectors including the urban, rural, population, and social-environmental sectors. The study compares the size of climate change damages in rural and urban areas. The results with representative concentration path (RCP) 8.5 show that the size of climate change damage will continue to increase by 2050. The projected damages from the reduced industrial outputs in urban areas will be larger than that in rural areas. The results also show that the service sector will face stronger impacts from climate change than the manufacturing and agricultural sectors. However, the total size of damage in the rural areas will be bigger than that of the urban areas. It is because the size of reduced industrial outputs per capita in the rural areas is twice bigger than that of the urban areas. The climate change damage in the social and environmental sectors (including a loss of biodiversity and an increase in health costs) account for the largest part of the total damage. The study finally provides suggestions and policies that can improve the capabilities to reduce the climate change damages. One of the major suggestions of this study is that the increase in the climate change budget corresponding to the GDP growth can minimize the size of climate change impacts.

4.
Article in English | MEDLINE | ID: mdl-33804431

ABSTRACT

Many countries are operating a heatwave warning system (HWWS) to mitigate the impact of heatwaves on human health. The level of heatwave warning is normally determined by using the threshold temperature of heat-related morbidity or mortality. However, morbidity and mortality threshold temperatures have not been used together to account for the severity of health impacts. In this study, we developed a heatwave warning system with two different warning levels: Level-1 and Level-2, by analyzing the severity and likelihood of heat-related morbidity and mortality using the generalized additive model. The study particularly focuses on the cases in Seoul, South Korea, between 2011 and 2018. The study found that the threshold temperature for heat-related morbidity and mortality are 30 °C and 33 °C, respectively. Approximately 73.1% of heat-related patients visited hospitals when temperature was between 30 °C and 33 °C. We validated the developed HWWS by using both the threshold temperatures of morbidity and mortality. The area under curves (AUCs) of the proposed model were 0.74 and 0.86 at Level-1 and Level-2, respectively. On the other hand, the AUCs of the model using only the mortality threshold were 0.60 and 0.86 at Level-1 and Level-2, respectively. The AUCs of the model using only the morbidity threshold were 0.73 and 0.78 at Level-1 and Level-2, respectively. The results suggest that the updated HWWS can help to reduce the impact of heatwaves, particularly on vulnerable groups, by providing the customized information. This also indicates that the HWWS could effectively mitigate the risk of morbidity and mortality.


Subject(s)
Hot Temperature , Infrared Rays , Humans , Morbidity , Republic of Korea/epidemiology , Seoul/epidemiology
5.
Environ Anal Health Toxicol ; 35(4): e2020024-0, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33434424

ABSTRACT

There has been growing concern over the effects of heat waves on health. However, the effects of heat waves on the health of individuals in vulnerable groups have rarely been examined. We aimed to investigate the acute health effects of heat waves in elderly individuals living in rural areas and to survey their adaptation capacity. Repeated measurements of body temperature (BT), blood pressure, sleep disturbance, and indoor temperature were conducted up to six times for each of 104 elderly individuals living in rural areas of South Korea during the 2018 heat wave. Changes in BT, systolic blood pressure (SBP), and diastolic blood pressure (DBP) according to variations in indoor and outdoor temperature were analyzed using linear mixed effect models controlling for age, sex, smoking, and drug use. We also surveyed heat wave adaptation capacity, heat wave shelters, and self-reported health problems. The average indoor temperature measured during the study period was 30.5°C (range: 22.9-38.3°C) and that of ambient temperature was 30.6°C (range: 24.6-36.3°C). BT significantly increased with indoor and outdoor temperatures. The effect on BT was greater in elderly women and the elderly with hypertension. DBP generally decreased with increasing indoor temperature, though the correlation was only statistically significant among the elderly with hypertension. Only 22 (21.2%) individuals used air conditioners during the heat wave. Most did not use an air conditioner mainly to avoid high electricity costs. Of the participants, 58.7% reported experiencing sleep disturbance, which was the most frequent self-reported health problem. Elderly individuals living in rural areas are directly exposed to high temperatures during heat waves, and their vital signs are sensitive to increases in indoor temperature due to poor adaptation capacity. Well-designed strategies for alleviating health-related stress during heat waves are necessary.

6.
Article in English | MEDLINE | ID: mdl-31060210

ABSTRACT

This study analyzed mortality change rate (MCR: daily change rate of mortality at a given temperature per average summer mortality) for 229 municipalities in Korea considering age, occupation, household type, chronic diseases, and regional temperature distribution. We found that the MCR for heat wave differs depending on socioeconomic factors and the temperature distribution in the region. The MCRs for the elderly (≥65 years of age), outdoor workers, one-person households, and chronic disease patients start to increase at lower temperatures and react more sensitively to temperature than others. For the socioeconomic factors considered in this study, occupation was found to be the most significant factor for the MCR differences (outdoor workers 1.17 and others 1.10 above 35 °C, p < 0.01). The MCRs of elderly outdoor workers increased consistently with temperature, while the MCRs of younger outdoor workers decreased at 33 °C, the heat wave warning level in Korea. The MCRs in lower temperature regions start to increase at 28 °C, whereas the MCRs start to increase at 30 °C in higher temperature regions. The results of this study suggest that heat wave policies should be based on contextualized impacts considering age, occupation, household type, chronic disease, and regional temperature distribution.


Subject(s)
Chronic Disease/mortality , Cold Temperature/adverse effects , Hot Temperature/adverse effects , Mortality/trends , Seasons , Adult , Age Factors , Aged , Aged, 80 and over , Cities/statistics & numerical data , Family Characteristics , Female , Forecasting , Humans , Male , Middle Aged , Occupations , Republic of Korea , Socioeconomic Factors
7.
Article in English | MEDLINE | ID: mdl-29690535

ABSTRACT

The Paris Agreement aims to limit the global temperature increase to below 2 °C above pre-industrial levels and to pursue efforts to limit the increase to even below 1.5 °C. Now, it should be asked what benefits are in pursuing these two targets. In this study, we assessed the temperature⁻mortality relationship using a distributed lag non-linear model in seven major cities of South Korea. Then, we projected future temperature-attributable mortality under different Representative Concentration Pathway (RCP) and Shared Socioeconomic Pathway (SSP) scenarios for those cities. Mortality was projected to increase by 1.53 under the RCP 4.5 (temperature increase by 2.83 °C) and 3.3 under the RCP 8.5 (temperature increase by 5.10 °C) until the 2090s, as compared to baseline (1991⁻2015) mortality. However, future mortality is expected to increase by less than 1.13 and 1.26 if the 1.5 °C and 2 °C increase targets are met, respectively, under the RCP 4.5. Achieving the more ambitious target of 1.5 °C will reduce mortality by 12%, when compared to the 2 °C target. When we estimated future mortality due to both temperature and population changes, the future mortality was found to be increased by 2.07 and 3.85 for the 1.5 °C and 2 °C temperature increases, respectively, under the RCP 4.5. These increases can be attributed to a growing proportion of elderly population, who is more vulnerable to high temperatures. Meeting the target of 1.5 °C will be particularly beneficial for rapidly aging societies, including South Korea.


Subject(s)
Climate Change/statistics & numerical data , Hot Temperature/adverse effects , Mortality/trends , Population Dynamics/statistics & numerical data , Socioeconomic Factors , Cities/statistics & numerical data , Forecasting , Humans , Republic of Korea
SELECTION OF CITATIONS
SEARCH DETAIL
...