Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Vaccines (Basel) ; 9(5)2021 May 14.
Article in English | MEDLINE | ID: mdl-34069081

ABSTRACT

Our aim was to determine whether polyphosphazene (PCEP), Curdlan (ß-glucan, a dectin-1 agonist), and Leptin could act as adjuvants to promote a Th17-type adaptive immune response in mice. Mice were vaccinated via the intramuscular route then boosted three weeks later with Ovalbumin plus: PCEP, Leptin, Curdlan, PCEP+Curdlan, Curdlan+Leptin, or saline. Mice vaccinated with OVA+PCEP and OVA+Curdlan+Leptin showed significantly higher frequency of antigen-specific CD4+ T cells secreting IL-17 relative to OVA-vaccinated mice. No formulation increased the frequency of CD4+ T cells secreting IL-4 or IFNγ. Since activation of innate immunity precedes the development of adaptive immunity, we wished to establish whether induction of Th17-type immunity could be predicted from in vitro experiments and/or from the local cytokine environment after immunization with adjuvants alone. Elevated IL-6 and TGFß with reduced secretion of IL-12 is a cytokine milieu known to promote differentiation of Th17-type immunity. We injected the immunostimulants or saline buffer into murine thigh muscles and measured acute local cytokine production. PCEP induced significant production of IL-6 and reduced IL-12 production in muscle but it did not lead to elevated TGFß production. Curdlan+Leptin injected into muscle induced significant production of TGFß and IL-17 but not IL-6 or IL-12. We also stimulated splenocytes with media or PCEP, Leptin, Curdlan, PCEP+Curdlan, Curdlan+Leptin, PCEP+Leptin, and PCEP+Curdlan+Leptin and measured cytokine production. PCEP stimulation of splenocytes failed to induce significant production of IL-6, IL-12, TGFß, or IL-17 and therefore ex vivo splenocyte stimulation failed to predict the increased frequency of Th17-type T cells in response to the vaccine. Curdlan-stimulated splenocytes produced Th1-type, inducing cytokine, IL-12. Curdlan+/-PCEP stimulated TGF-ß production and Curdlan+Leptin+/- PCEP induced secretion of IL-17. We conclude that PCEP as well as Curdlan+Leptin are Th17-type vaccine adjuvants in mice but that cytokines produced in response to these adjuvants in muscle after injection or in ex vivo cultured splenocytes did not predict their role as a Th17-type adjuvant. Together, these data suggest that the cytokine environments induced by these immunostimulants did not predict induction of an antigen-specific Th17-type adaptive immune response. This is the first report of these adjuvants inducing a Th17-type adaptive immune response.

2.
Vaccines (Basel) ; 8(4)2020 Oct 01.
Article in English | MEDLINE | ID: mdl-33019524

ABSTRACT

The development of new, effective, and safe vaccines necessarily requires the identification of new adjuvant(s) to enhance the potency and longevity of antigen-specific immune responses. In the present study, we compare the antibody-mediated and cell-mediated immune (CMI) responses within groups of mice vaccinated subcutaneously with ovalbumin (OVA; as an experimental antigen) plus polyphosphazene (an innate immune modulator), Polyinosinic:polycytidylic acid (poly-I:C; (an RNA mimetic) and glycopeptide ARC5 (which is a Toll-like receptor (TLR), TLR2 ligand and PAM3CSK4 analogue) formulated together in a soluble vaccine. We also investigated the effect of a polymeric nanoparticle of ARC4 and ARC7 (which are a novel muramyl dipeptide analogue and a monophosophoryl lipid A (MPLA) analogue, respectively) plus OVA +/- ARC5 as a subcutaneous vaccine in mice. OVA+ARC4/ARC7 nanoparticle +/- ARC5 triggered a robust and balanced Th1/Th2-type humoral response with significant anti-OVA IgA in serum, and significant interferon (IFN)-γ and interleukin (IL)-17 production in splenocytes after 35 days relative to the controls. Formulation of OVA with ARC4/ARC7 nanoparticles should be investigated for inducing protective immunity against infectious pathogens in mice and other species.

3.
Vaccine ; 36(12): 1606-1613, 2018 03 14.
Article in English | MEDLINE | ID: mdl-29454517

ABSTRACT

Swine influenza virus is endemic worldwide and it is responsible for significant economic losses to the swine industry. A vaccine that stimulates a rapid and long-lasting protective immune response to prevent this infection is highly sought. Poly[di(sodium carboxylatoethylphenoxy)-phosphazene (PCEP) has demonstrated adjuvant activity when formulated as part of multiple vaccines in mice and pigs. In this study we examined the magnitude and type of immune response induced in pigs vaccinated via the intramuscular or intradermal routes with inactivated swine influenza virus (SIV) H1N1 vaccine formulated with PCEP. Intradermal administration of PCEP-adjuvanted inactivated SIV vaccine stimulated significant anti-SIV antibody titres, increased neutralizing antibodies, and significantly reduced lung virus load with limited reduction of gross lung lesions after challenge with virulent H1N1 relative to control animals. These results indicate that PCEP may be effective as a vaccine adjuvant against swine influenza viruses in pigs and should be considered a potential candidate adjuvant for future swine intradermal influenza vaccines.


Subject(s)
Influenza Vaccines/immunology , Orthomyxoviridae Infections/veterinary , Orthomyxoviridae/immunology , Swine Diseases/immunology , Swine Diseases/prevention & control , Vaccines, Inactivated/immunology , Adjuvants, Immunologic , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Immunity, Cellular , Immunity, Humoral , Immunization , Influenza A Virus, H1N1 Subtype/immunology , Influenza Vaccines/administration & dosage , Lung/immunology , Lung/virology , Swine , Swine Diseases/virology , Vaccines, Inactivated/administration & dosage , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL
...