Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Philos Trans A Math Phys Eng Sci ; 381(2262): 20220183, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-37866383

ABSTRACT

The overturning circulation of the subpolar North Atlantic (SPNA) plays a fundamental role in Earth's climate variability and change. Here, we show from observations that the recent warming period since about 2016 in the eastern SPNA involves increased western boundary density at the intergyre boundary, likely due to enhanced buoyancy forcing as a response to the strong increase in the North Atlantic Oscillation since the early 2010s. As these deep positive density anomalies spread southward along the western boundary, they enhance the North Atlantic Current and associated meridional heat transport at the intergyre region, leading to increased influx of subtropical heat into the eastern SPNA. Based on the timing of this chain of events, we conclude that this recent warming phase since about 2016 is primarily associated with this observed mechanism of changes in deep western boundary density, an essential element in these interactions. This article is part of a discussion meeting issue 'Atlantic overturning: new observations and challenges'.

2.
Sci Rep ; 13(1): 15334, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37714863

ABSTRACT

Reliable sea-level observations in coastal regions are needed to assess the impact of sea level on coastal communities and ecosystems. This paper evaluates the ability of in-situ and remote sensing instruments to monitor and help explain the mass component of sea level along the coast of Norway. The general agreement between three different GRACE/GRACE-FO mascon solutions and a combination of satellite altimetry and hydrography gives us confidence to explore the mass component of sea level in coastal areas on intra-annual timescales. At first, the estimates reveal a large spatial-scale coherence of the sea-level mass component on the shelf, which agrees with Ekman theory. Then, they suggest a link between the mass component of sea level and the along-slope wind stress integrated along the eastern boundary of the North Atlantic, which agrees with the theory of poleward propagating coastal trapped waves. These results highlight the potential of the sea-level mass component from GRACE and GRACE-FO, satellite altimetry and the hydrographic stations over the Norwegian shelf. Moreover, they indicate that GRACE and GRACE-FO can be used to monitor and understand the intra-annual variability of the mass component of sea level in the coastal ocean, especially where in-situ measurements are sparse or absent.

3.
Nat Commun ; 14(1): 2065, 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37045812

ABSTRACT

The overturning circulation in the Nordic Seas involves the transformation of warm Atlantic waters into cold, dense overflows. These overflow waters return to the North Atlantic and form the headwaters to the deep limb of the Atlantic meridional overturning circulation (AMOC). The Nordic Seas are thus a key component of the AMOC. However, little is known about the response of the overturning circulation in the Nordic Seas to future climate change. Here we show using global climate models that, in contrast to the North Atlantic, the simulated density-space overturning circulation in the Nordic Seas increases throughout most of the 21st century as a result of enhanced horizontal circulation and a strengthened zonal density gradient. The increased Nordic Seas overturning is furthermore manifested in the overturning circulation in the eastern subpolar North Atlantic. A strengthened Nordic Seas overturning circulation could therefore be a stabilizing factor in the future AMOC.

4.
Nat Commun ; 11(1): 3721, 2020 07 24.
Article in English | MEDLINE | ID: mdl-32709916

ABSTRACT

The dense overflow waters of the Nordic Seas are an integral link and important diagnostic for the stability of the Atlantic Meridional Overturning Circulation (AMOC). The pathways feeding the overflow remain, however, poorly resolved. Here we use multiple observational platforms and an eddy-resolving ocean model to identify an unrecognized deep flow toward the Faroe Bank Channel. We demonstrate that anticyclonic wind forcing in the Nordic Seas via its regulation of the basin circulation plays a key role in activating an unrecognized overflow path from the Norwegian slope - at which times the overflow is anomalously strong. We further establish that, regardless of upstream pathways, the overflows are mostly carried by a deep jet banked against the eastern slope of the Faroe-Shetland Channel, contrary to previous thinking. This deep flow is thus the primary conduit of overflow water feeding the lower branch of the AMOC via the Faroe Bank Channel.

5.
Nat Commun ; 11(1): 585, 2020 Jan 29.
Article in English | MEDLINE | ID: mdl-31996687

ABSTRACT

The Atlantic Ocean overturning circulation is important to the climate system because it carries heat and carbon northward, and from the surface to the deep ocean. The high salinity of the subpolar North Atlantic is a prerequisite for overturning circulation, and strong freshening could herald a slowdown. We show that the eastern subpolar North Atlantic underwent extreme freshening during 2012 to 2016, with a magnitude never seen before in 120 years of measurements. The cause was unusual winter wind patterns driving major changes in ocean circulation, including slowing of the North Atlantic Current and diversion of Arctic freshwater from the western boundary into the eastern basins. We find that wind-driven routing of Arctic-origin freshwater intimately links conditions on the North West Atlantic shelf and slope region with the eastern subpolar basins. This reveals the importance of atmospheric forcing of intra-basin circulation in determining the salinity of the subpolar North Atlantic.

6.
Sci Rep ; 9(1): 1041, 2019 01 31.
Article in English | MEDLINE | ID: mdl-30705311

ABSTRACT

Regional sea-level rise is characterized by decadal acceleration and deceleration periods that typically stem from oceanic climate variability. Here, we investigate decadal sea-level trends during the altimetry era and pin down the associated ocean circulation changes. We find that decadal subpolar gyre cooling (warming), strengthening (weakening), widening (shrinking) since the mid-2000s (early 1990s) resulted in negative (positive) sea level trends of -7.1 mm/yr ± 1.3 mm/yr (3.9 mm/yr ± 1.5 mm/yr). These large-scale changes further coincide with steric sea-level trends, and are driven by decadal-scale ocean circulation variability. Sea level on the European shelf, however, is found to correlate well with along-slope winds (R = 0.78), suggesting it plays a central role in driving the associated low-frequency dynamic sea level variability. Furthermore, when the North Atlantic is in a cooling (warming) period, the winds along the eastern boundary are predominantly from the North (South), which jointly drive a slowdown (rapid increase) in shelf and coastal sea level rise. Understanding the mechanisms that produce these connections may be critical for interpreting future regional sea-level trends.

7.
Sci Rep ; 8(1): 10937, 2018 07 19.
Article in English | MEDLINE | ID: mdl-30026485

ABSTRACT

Summer rainfall in the Sahel region has exhibited strong multidecadal variability during the 20th century causing dramatic human and socio-economic impacts. Studies have suggested that the variability is linked to the Atlantic multidecadal variability; a spatially persistent pattern of warm/cold sea surface temperatures in the North Atlantic. In the last few years, several promising century-long reanalysis datasets have been made available, opening up for further studies into the dynamics inducing the observed low-frequency rainfall variability in Sahel. We find that although three of the 20th century ECMWF reanalyses show clear multidecadal rainfall variability with extended wet and dry periods, the timing of the multidecadal variability in two of these reanalyses is found to exhibit almost anti-phase features for a large part of the 20th century when compared to observations. The best representation of the multidecadal rainfall variability is found in the ECMWF reanalysis that, unlike the other reanalyses (including NOAA's 20th century), do not assimilate any observations and may well be a critical reason for this mismatch, as discussed herein. This reanalysis, namely ERA-20CM, is thus recommended for future studies on the dynamics driving the multidecadal rainfall variability in Sahel and its linkages to the low-frequency North Atlantic oceanic temperatures.

8.
Nat Commun ; 8: 16020, 2017 07 07.
Article in English | MEDLINE | ID: mdl-28685758

ABSTRACT

The evolution of the El Niño-Southern Oscillation (ENSO) during the Holocene remains uncertain. In particular, a host of new paleoclimate records suggest that ENSO internal variability or other external forcings may have dwarfed the fairly modest ENSO response to precessional insolation changes simulated in climate models. Here, using fully coupled ocean-atmosphere model simulations, we show that accounting for a vegetated and less dusty Sahara during the mid-Holocene relative to preindustrial climate can reduce ENSO variability by 25%, more than twice the decrease obtained using orbital forcing alone. We identify changes in tropical Atlantic mean state and variability caused by the momentous strengthening of the West Africa Monsoon (WAM) as critical factors in amplifying ENSO's response to insolation forcing through changes in the Walker circulation. Our results thus suggest that potential changes in the WAM due to anthropogenic warming may influence ENSO variability in the future as well.

9.
Proc Natl Acad Sci U S A ; 112(45): 13784-8, 2015 Nov 10.
Article in English | MEDLINE | ID: mdl-26504201

ABSTRACT

Large volcanic eruptions can have major impacts on global climate, affecting both atmospheric and ocean circulation through changes in atmospheric chemical composition and optical properties. The residence time of volcanic aerosol from strong eruptions is roughly 2-3 y. Attention has consequently focused on their short-term impacts, whereas the long-term, ocean-mediated response has not been well studied. Most studies have focused on tropical eruptions; high-latitude eruptions have drawn less attention because their impacts are thought to be merely hemispheric rather than global. No study to date has investigated the long-term effects of high-latitude eruptions. Here, we use a climate model to show that large summer high-latitude eruptions in the Northern Hemisphere cause strong hemispheric cooling, which could induce an El Niño-like anomaly, in the equatorial Pacific during the first 8-9 mo after the start of the eruption. The hemispherically asymmetric cooling shifts the Intertropical Convergence Zone southward, triggering a weakening of the trade winds over the western and central equatorial Pacific that favors the development of an El Niño-like anomaly. In the model used here, the specified high-latitude eruption also leads to a strengthening of the Atlantic Meridional Overturning Circulation (AMOC) in the first 25 y after the eruption, followed by a weakening lasting at least 35 y. The long-lived changes in the AMOC strength also alter the variability of the El Niño-Southern Oscillation (ENSO).

SELECTION OF CITATIONS
SEARCH DETAIL
...