Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Front Microbiol ; 14: 1274740, 2023.
Article in English | MEDLINE | ID: mdl-38152377

ABSTRACT

Introduction: Pseudomonas aeruginosa infections are one of the leading causes of death in immunocompromised patients with cystic fibrosis, diabetes, and lung diseases such as pneumonia and bronchiectasis. Furthermore, P. aeruginosa is one of the main multidrug-resistant bacteria responsible for nosocomial infections worldwide, including the multidrug-resistant CCBH4851 strain isolated in Brazil. Methods: One way to analyze their dynamic cellular behavior is through computational modeling of the gene regulatory network, which represents interactions between regulatory genes and their targets. For this purpose, Boolean models are important predictive tools to analyze these interactions. They are one of the most commonly used methods for studying complex dynamic behavior in biological systems. Results and discussion: Therefore, this research consists of building a Boolean model of the gene regulatory network of P. aeruginosa CCBH4851 using data from RNA-seq experiments. Next, the basins of attraction are estimated, as these regions and the transitions between them can help identify the attractors, representing long-term behavior in the Boolean model. The essential genes of the basins were associated with the phenotypes of the bacteria for two conditions: biofilm formation and polymyxin B treatment. Overall, the Boolean model and the analysis method proposed in this work can identify promising control actions and indicate potential therapeutic targets, which can help pinpoint new drugs and intervention strategies.

2.
Mem Inst Oswaldo Cruz ; 117: e220111, 2022.
Article in English | MEDLINE | ID: mdl-36259790

ABSTRACT

BACKGROUND: Healthcare-associated infections due to multidrug-resistant (MDR) bacteria such as Pseudomonas aeruginosa are significant public health issues worldwide. A system biology approach can help understand bacterial behaviour and provide novel ways to identify potential therapeutic targets and develop new drugs. Gene regulatory networks (GRN) are examples of in silico representation of interaction between regulatory genes and their targets. OBJECTIVES: In this work, we update the MDR P. aeruginosa CCBH4851 GRN reconstruction and analyse and discuss its structural properties. METHODS: We based this study on the gene orthology inference methodology using the reciprocal best hit method. The P. aeruginosa CCBH4851 genome and GRN, published in 2019, and the P. aeruginosa PAO1 GRN, published in 2020, were used for this update reconstruction process. FINDINGS: Our result is a GRN with a greater number of regulatory genes, target genes, and interactions compared to the previous networks, and its structural properties are consistent with the complexity of biological networks and the biological features of P. aeruginosa. MAIN CONCLUSIONS: Here, we present the largest and most complete version of P. aeruginosa GRN published to this date, to the best of our knowledge.


Subject(s)
Cross Infection , Pseudomonas Infections , Humans , Pseudomonas aeruginosa/genetics , Gene Regulatory Networks/genetics , Drug Resistance, Multiple, Bacterial/genetics , Pseudomonas Infections/genetics , Anti-Bacterial Agents
3.
Mem. Inst. Oswaldo Cruz ; 117: e220111, 2022. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1405995

ABSTRACT

BACKGROUND Healthcare-associated infections due to multidrug-resistant (MDR) bacteria such as Pseudomonas aeruginosa are significant public health issues worldwide. A system biology approach can help understand bacterial behaviour and provide novel ways to identify potential therapeutic targets and develop new drugs. Gene regulatory networks (GRN) are examples of in silico representation of interaction between regulatory genes and their targets. OBJECTIVES In this work, we update the MDR P. aeruginosa CCBH4851 GRN reconstruction and analyse and discuss its structural properties. METHODS We based this study on the gene orthology inference methodology using the reciprocal best hit method. The P. aeruginosa CCBH4851 genome and GRN, published in 2019, and the P. aeruginosa PAO1 GRN, published in 2020, were used for this update reconstruction process. FINDINGS Our result is a GRN with a greater number of regulatory genes, target genes, and interactions compared to the previous networks, and its structural properties are consistent with the complexity of biological networks and the biological features of P. aeruginosa. MAIN CONCLUSIONS Here, we present the largest and most complete version of P. aeruginosa GRN published to this date, to the best of our knowledge.

SELECTION OF CITATIONS
SEARCH DETAIL
...