Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Neurobiol Dis ; : 106562, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38876322

ABSTRACT

Ataxia Telangiectasia (AT) is a rare disorder caused by mutations in the ATM gene and results in progressive neurodegeneration for reasons that remain poorly understood. In addition to its central role in nuclear DNA repair, ATM operates outside the nucleus to regulate metabolism, redox homeostasis and mitochondrial function. However, a systematic investigation into how and when loss of ATM affects these parameters in relevant human neuronal models of AT was lacking. We therefore used cortical neurons and brain organoids from AT-patient iPSC and gene corrected isogenic controls to reveal levels of mitochondrial dysfunction, oxidative stress, and senescence that vary with developmental maturity. Transcriptome analyses identified disruptions in regulatory networks related to mitochondrial function and maintenance, including alterations in the PARP/SIRT signalling axis and dysregulation of key mitophagy and mitochondrial fission-fusion processes. We further show that antioxidants reduce ROS and restore neurite branching in AT neuronal cultures, and ameliorate impaired neuronal activity in AT brain organoids. We conclude that progressive mitochondrial dysfunction and aberrant ROS production are important contributors to neurodegeneration in AT and are strongly linked to ATM's role in mitochondrial homeostasis regulation.

2.
Stem Cell Res ; 56: 102528, 2021 10.
Article in English | MEDLINE | ID: mdl-34507142

ABSTRACT

Ataxia Telangiectasia is a rare autosomal recessive disorder caused by a mutated ATM gene. The most debilitating symptom of Ataxia Telangiectasia is the progressive neurodegeneration of the cerebellum, though the molecular mechanisms driving this degeneration remains unclear. Here we describe the generation and validation of an induced pluripotent stem cell (iPSC) line from an olfactory biopsy from a patient with Ataxia Telangiectasia. Sequencing identified two previously unreported disease-causing mutations in the ATM gene. This line can be used to generate 2D and 3D patient-specific neuronal models enabling investigations into the mechanisms underlying neurodegeneration.


Subject(s)
Ataxia Telangiectasia , Induced Pluripotent Stem Cells , Ataxia Telangiectasia/genetics , Ataxia Telangiectasia Mutated Proteins/genetics , Biopsy , Humans , Mutation/genetics
3.
Stem Cell Res ; 56: 102527, 2021 10.
Article in English | MEDLINE | ID: mdl-34507143

ABSTRACT

Human olfactory neurosphere-derived (ONS) cells are derived from the olfactory mucosa and display some progenitor- and neuronal cell-like properties, making them useful models of neurological disorders. However, they lack several important characteristics of true neurons, which can be overcome using induced pluripotent stem cell (iPSC) -derived neurons. Here we describe, for the first time, the generation and validation of an iPSC line from an olfactory biopsy from a control cohort member. This data lays the groundwork for future reprogramming of ONS cells, which can be used to generate neuronal models and compliment current ONS cell-based investigations into numerous neurological disorders.


Subject(s)
Induced Pluripotent Stem Cells , Olfactory Mucosa , Biopsy , Cell Differentiation , Humans , Neurons
4.
NPJ Aging Mech Dis ; 7(1): 18, 2021 Aug 02.
Article in English | MEDLINE | ID: mdl-34341344

ABSTRACT

Aging is a major risk factor for many neurodegenerative diseases. Klotho (KL) is a glycosylated transmembrane protein that is expressed in the choroid plexus and neurons of the brain. KL exerts potent anti-aging effects on multiple cell types in the body but its role in human brain cells remains largely unclear. Here we show that human cortical neurons, derived from human pluripotent stem cells in 2D cultures or in cortical organoids, develop the typical hallmarks of senescent cells when maintained in vitro for prolonged periods of time, and that moderate upregulation or repression of endogenous KL expression in cortical organoids inhibits and accelerates senescence, respectively. We further demonstrate that KL expression alters the expression of senescence-associated genes including, extracellular matrix genes, and proteoglycans, and can act in a paracrine fashion to inhibit neuronal senescence. In summary, our results establish an important role for KL in the regulation of human neuronal senescence and offer new mechanistic insight into its role in human brain aging.

SELECTION OF CITATIONS
SEARCH DETAIL
...