Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Opt Express ; 25(12): 13252-13262, 2017 Jun 12.
Article in English | MEDLINE | ID: mdl-28788860

ABSTRACT

We present an experimental study and analysis of a travelling wave series push-pull silicon photonic multi-electrode Mach-Zehnder modulator (ME-MZM) and compare its performance with a single-electrode travelling wave Mach-Zehnder modulator (TWMZM). Utilizing the functionality of the ME-MZM structure plus digital-signal-processing, we report: 1) the C-band transmission of 84 Gb/s OOK modulated data below the KP4 forward error correction threshold with 2 Vpp drive voltage over a distance of 2 km; 2) the transmission of a 128 Gb/s optical 4-level pulse amplitude modulated signal over 1 km of fiber; and 3) the generation of a 168 Gb/s PAM-4 signal using two electrical OOK signals. By comparing the transmission system performance measurements for the ME-MZM with measurements performed using a similar series push-pull TWMZM, we show that the ME-MZM provides a clear advantage in achieving higher baud PAM-4 generation and transmission compared to a TWMZM.

2.
Opt Express ; 24(26): 30485-30493, 2016 Dec 26.
Article in English | MEDLINE | ID: mdl-28059395

ABSTRACT

We demonstrate experimentally the transmission of single carrier 56 Gbaud 16-QAM, 8-QAM and QPSK optically modulated signals over 320, 960 and 2,880 km, respectively, using a fully packaged InP IQ modulator and a Stokes vector direct detection (SV-DD) receiver realized using discrete optics. Results show that by optimizing the carrier-to-signal-power ratio, the total throughput-times-distance product for 16 QAM and QPSK are 71,680 Gbps.km and 322,560 Gbps.km, respectively, at bit error rate (BER) below the hard decision forward error correcting threshold (HD-FEC) of 4.5 × 10-3.

3.
Opt Express ; 23(11): 14263-87, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-26072793

ABSTRACT

The design and characterization of a slow-wave series push-pull traveling wave silicon photonic modulator is presented. At 2 V and 4 V reverse bias, the measured -3 dB electro-optic bandwidth of the modulator with an active length of 4 mm are 38 GHz and 41 GHz, respectively. Open eye diagrams are observed up to bitrates of 60 Gbps without any form of signal processing, and up to 70 Gbps with passive signal processing to compensate for the test equipment. With the use of multi-level amplitude modulation formats and digital-signal-processing, the modulator is shown to operate below a hard-decision forward error-correction threshold of 3.8×10-3 at bitrates up to 112 Gbps over 2 km of single mode optical fiber using PAM-4, and over 5 km of optical fiber with PAM-8. Energy consumed solely by the modulator is also estimated for different modulation cases.

4.
Opt Express ; 23(9): 11412-23, 2015 May 04.
Article in English | MEDLINE | ID: mdl-25969236

ABSTRACT

We present a method to mitigate the chromatic dispersion (CD)-induced power fading effect (PFE) in high-speed and short-reach carrier-less amplitude and phase (CAP) systems using the degenerate four-wave mixing (DFWM) effect and a decision feedback equalizer (DFE). Theoretical and numerical investigations reveal that DFWM components produced by the interaction between the main carrier and the signal sideband help to mitigate PFE in direct detection systems. By optimizing the launch power, a maximum reach of 60 km in single mode fiber (SMF-e + ) at 1530nm is experimentally demonstrated for a 40 Gbit/s CAP32 system. In addition, we study the performance of a decision feedback equalizer (DFE) and a traditional linear equalizer (LE) in a channel with non-flat in-band frequency response. The superior PFE tolerance of DFE is experimentally validated, and thereby, the maximum reach is extended to 80 km. To the best of our knowledge, this is the twice the longest transmission distance reported so far for a single-carrier 40 Gbit/s CAP system around 1550 nm.

5.
Opt Express ; 23(2): 882-94, 2015 Jan 26.
Article in English | MEDLINE | ID: mdl-25835848

ABSTRACT

We experimentally demonstrate improved intra-channel nonlinearity tolerance of the root M-shaped pulse (RMP) with respect to the root raised cosine (RRC) pulse in spectrally efficient 128 Gbit/s PDM-16QAM coherent transmission systems. In addition we evaluate the impact of dispersion map and fiber dispersion parameter on the intra-channel nonlinearity tolerance of the RRC pulse and the RMP via both simulation and experimentation. The RMP is shown to have a better nonlinear tolerance than the RRC pulse for most investigated scenarios except for links with zero residual dispersion percentage per span or the zero dispersion region of a fiber. Therefore, the RMP is suitable for extending the maximum reach of spectrally efficient coherent transmission systems in legacy links in addition to currently intensively studied standard single mode fiber (SSMF) based dispersion unmanaged links.

6.
Opt Express ; 22(22): 27553-64, 2014 Nov 03.
Article in English | MEDLINE | ID: mdl-25401902

ABSTRACT

We propose a decision-aided algorithm to compensate the sampling frequency offset (SFO) between the transmitter and receiver for reduced-guard-interval (RGI) coherent optical (CO) OFDM systems. In this paper, we first derive the cyclic prefix (CP) requirement for preventing OFDM symbols from SFO induced inter-symbol interference (ISI). Then we propose a new decision-aided SFO compensation (DA-SFOC) algorithm, which shows a high SFO tolerance and reduces the CP requirement. The performance of DA-SFOC is numerically investigated for various situations. Finally, the proposed algorithm is verified in a single channel 28 Gbaud polarization division multiplexing (PDM) RGI CO-OFDM experiment with QPSK, 8 QAM and 16 QAM modulation formats, respectively. Both numerical and experimental results show that the proposed DA-SFOC method is highly robust against the standard SFO in optical fiber transmission.

7.
Opt Express ; 22(17): 21018-36, 2014 Aug 25.
Article in English | MEDLINE | ID: mdl-25321303

ABSTRACT

We present a Silicon Photonic (SiP) intensity modulator operating at 1.3 µm with pulse amplitude modulation formats for short reach transmission employing a digital to analog converter for the RF signal generator, enabling pulse shaping and precompensation of the transmitter's frequency response. Details of the SiP Mach-Zehnder interfometer are presented. We study the system performance at various bit rates, PAM orders and propagation distances. To the best of our knowledge, we report the first demonstration of a 112 Gb/s transmission over 10 km of SMF fiber operating below pre-FEC BER threshold of 3.8 × 10(-3) employing PAM-8 at 37.4 Gbaud using a fully packaged SiP modulator. An analytical model for the Q-factor metric applicable for multilevel PAM-N signaling is derived and accurately experimentally verified in the case of Gaussian noise limited detection. System performance is experimentally investigated and it is demonstrated that PAM order selection can be optimally chosen as a function of the desired throughput. We demonstrate the ability of the proposed transmitter to exhibit software-defined transmission for short reach applications by selecting PAM order, symbol rate and pulse shape.

8.
Opt Express ; 22(15): 17810-22, 2014 Jul 28.
Article in English | MEDLINE | ID: mdl-25089402

ABSTRACT

We propose an adaptive channel estimation (CE) method for zero-guard-interval (ZGI) coherent optical (CO)-OFDM systems, and demonstrate its performance in a single channel 28 Gbaud polarization-division multiplexed ZGI CO-OFDM experiment with only 1% OFDM processing overhead. We systematically investigate its robustness against various transmission impairments including residual chromatic dispersion, polarization-mode dispersion, state of polarization rotation, sampling frequency offset and fiber nonlinearity. Both experimental and numerical results show that the adaptive CE-aided ZGI CO-OFDM is highly robust against these transmission impairments in fiber optical transmission systems.

9.
Opt Express ; 22(15): 18770-7, 2014 Jul 28.
Article in English | MEDLINE | ID: mdl-25089494

ABSTRACT

In this work we experimentally investigate the improved intra-channel fiber nonlinearity tolerance of digital subcarrier multiplexed (SCM) signals in a single-channel coherent optical transmission system. The digital signal processing (DSP) for the generation and reception of the SCM signals is described. We show experimentally that the SCM signal with a nearly-optimum number of subcarriers can extend the maximum reach by 23% in a 24 GBaud DP-QPSK transmission with a BER threshold of 3.8 × 10(-3) and by 8% in a 24 GBaud DP-16-QAM transmission with a BER threshold of 2 × 10(-2). Moreover, we show by simulations that the improved performance of SCM signals is observed over a wide range of baud rates, further indicating the merits of SCM signals in baud-rate flexible agile transmissions and future high-speed optical transport systems.

10.
Opt Express ; 22(3): 2278-88, 2014 Feb 10.
Article in English | MEDLINE | ID: mdl-24663520

ABSTRACT

In this paper, we propose a low-complexity format-transparent digital signal processing (DSP) scheme for next generation flexible and energy-efficient transceiver. It employs QPSK symbols as the training and pilot symbols for the initialization and tracking stage of the receiver-side DSP, respectively, for various modulation formats. The performance is numerically and experimentally evaluated in a dual polarization (DP) 11 Gbaud 64QAM system. Employing the proposed DSP scheme, we conduct a system-level study of Tb/s bandwidth-adaptive superchannel transmissions with flexible modulation formats including QPSK, 8QAM and 16QAM. The spectrum bandwidth allocation is realized in the digital domain instead of turning on/off sub-channels, which improves the performance of higher order QAM. Various transmission distances ranging from 240 km to 6240 km are demonstrated with a colorless detection for hardware complexity reduction.

11.
Opt Express ; 22(4): 4083-90, 2014 Feb 24.
Article in English | MEDLINE | ID: mdl-24663730

ABSTRACT

We demonstrate error-free wavelength conversion of 28 GBaud 16-QAM single polarization (112 Gb/s) signals based on four-wave mixing in a dispersion engineered silicon nanowire (SNW). Wavelength conversion covering the entire C-band is achieved using a single pump. We characterize the performance of the wavelength converter subsystem through the electrical signal to noise ratio penalty as well as the bit error rate of the converted signal as a function of input signal power. Moreover, we evaluate the degradation of the optical signal to noise ratio due to wavelength conversion in the SNW.

12.
Opt Express ; 22(5): 5693-730, 2014 Mar 10.
Article in English | MEDLINE | ID: mdl-24663910

ABSTRACT

We study analytically and experimentally the performance limits of a Si-photonic (SiP) balanced coherent receiver (CRx) co-packaged with transimpedance amplifiers (TIAs) in a colorless WDM scheme. Firstly, the CRx architecture is depicted and characterization results are presented. Secondly, an analytical expression for the signal-to-noise ratio (SNR) at the CRx output is rigorously developed and various noise sources in the context of colorless reception are outlined. Thirdly, we study experimentally the system-level CRx performance in colorless reception of 16 × 112 Gbps PDM-QPSK WDM channels. Using a 15.5 dBm local oscillator (LO) power, error free transmissions over 4800 and 4160 km at received powers of -3 and -21 dBm per channel, respectively, were achieved in a fully colorless and preamplifierless reception. Next, a set of measurements on one of the center WDM channels is performed where the LO power, received signal power, distance, and number of channels presented to the CRx are swept to evaluate the performance limits of colorless reception. Results reveal that the LO beating with optical noise incoming with the signal is a dominant noise source regardless of received signal power. In the high received signal power regime (~0 dBm/channel), the self-beat noise from out-of-band (OOB) channels is an additional major noise source especially for small LO-to-signal power ratio, short reach and large number of OOB channels. For example, at a received signal power of 0 dBm/channel after 1600 km transmission, the SNR difference between the fully filtered and colorless scenarios, where 1 and 16 channels are passed to the CRx respectively, grows from 0.5 to 3.3 dB as the LO power changes from 12 to 0 dBm. For low received power (~-12 dBm/channel), the effect of OOB channels becomes minor while the receiver shot and thermal noises become more significant. We identify the common mode rejection ratio (CMRR) and sensitivity as the two important CRx specifications that impact the performance at high and low received signal power regimes, respectively. Finally, an excellent match between experimental and analytical SNRs is proven after the derived SNR model is fitted to the experimental data in a least-squares sense. The model is then used to predict that the CRx can operate colorlessly for a fully populated WDM spectrum with 80 channels provided that the LO-to-signal power ratio is properly set.

13.
Opt Express ; 21(7): 8157-65, 2013 Apr 08.
Article in English | MEDLINE | ID: mdl-23571905

ABSTRACT

In this paper, we propose a low-complexity and efficient carrier recovery algorithm for single carrier transmission systems that is capable of tracking frequency offset (FO) variations. Working as a FO tracking estimator, the algorithm demonstrates good accuracy in simulation and a FO drift of up to 200 MHz/µs can be compensated with minimal degradation in a QPSK system. In 112 Gb/s dual polarization (DP) QPSK experiments, the algorithm recovers a data sequence having >80 MHz of FO drift within 250 µs, providing better performance than a one-time estimator. In a regime that utilizes parallel processing of the data, we further demonstrate FO tracking and carrier phase recovery (CPR) using only one of the streams in a parallelized configuration, and we apply the carrier information to recover neighbouring streams directly. Consequently, the complexity of both the FO tracking and the CPR is further reduced.


Subject(s)
Algorithms , Artifacts , Signal Processing, Computer-Assisted , Telecommunications
14.
Opt Express ; 21(25): 30204-20, 2013 Dec 16.
Article in English | MEDLINE | ID: mdl-24514599

ABSTRACT

We propose a new modulation format providing 5 bits of information per recovered symbol while maintaining constant the total optical power. The proposed format applies a simple power constrain to the DP-8QAM format. This modulation format provides a passive way to mitigate nonlinear impairments due to Kerr effects occurring during propagation, and most specifically in the first 40 km. This report presents, to the authors' knowledge, a new transmission format using solely phase and polarization as modulation methods. The performance of this format, named 8PolSK-QPSK, is experimentally compared with that of the DP-8QAM format as both require equal transmitter complexity and implementation penalty, at the expense of a 20% increase in signaling baud rate. The greater nonlinear tolerance of this format is experimentally demonstrated. Moreover, thorough analysis of the Manakov-PDM propagation equation applied to both formats provides analytic explanation of the 8PolSK-QPSK's improved performance. The constant power property of the symbol set of the proposed format mitigates self- and cross-phase modulation (SPM, XPM) nonlinear effects and is experimentally validated over a long-haul transmission system in a WDM scenario. A total throughput of 7 × 129 Gbps is maintained for the transmission format comparison. Simulation of the same transmission system allows separate analysis of the strength of SPM, XPM and Cross-Polarization Modulation (XPolM) nonlinear effects and demonstrate reduced nonlinear impairments for the proposed format in the first span. We show an experimental reduction of the required OSNR for a BER threshold of 1.4 × 10(-2) of 0.5 dB for 8PolSK-QPSK compared to DP-8QAM in back-to-back. After 1920 km of SMF fiber, we demonstrate a required OSNR (ROSNR) diminution for increasing launch power, allowing a ROSNR relief of 0.95 dB at optimal launch power of -1 dBm for the proposed format. Using the same threshold, we show an increased reach by more than 34%, or 975 km, at optimal launch power. We also demonstrate that the relative reach increase for 8PolSK-QPSK compared to DP-8QAM monotonically increases with increasing BER threshold and that the BER growth with distance, after the first span, is equal for both formats.

15.
Opt Express ; 21(26): 31966-82, 2013 Dec 30.
Article in English | MEDLINE | ID: mdl-24514792

ABSTRACT

A new intersymbol interference (ISI)-free nonlinearity-tolerant frequency domain root M-shaped pulse (RMP) is derived for dispersion unmanaged coherent optical transmission systems. Beginning with the relationship between pulse shaping and intra-channel nonlinearity effects, we derive closed-form expressions for the proposed pulse. Experimental demonstrations reveal that by employing the proposed pulse at a roll-off factor of 1, the maximum transmission reach of a single-channel 56 Gb/s polarization-division-multiplexed quadrature phase-shift keying (PDM-QPSK) system can be extended by 33% and 17%, when compared to systems using a root raised cosine (RRC) pulse and a root optimized pulse (ROP), respectively. For a single-channel 128 Gb/s polarization-division-multiplexed 16-quadrature amplitude modulation (PDM-16QAM) system, the reach can be extended by 44% and 18%, respectively. Reach increases of 30% and 13% are also observed for a dense wavelength-division multiplexing (DWDM) 504 Gb/s PDM-QPSK transmission system. The tolerance to narrow filtering effect for the three pulses is experimentally studied as well.

16.
Opt Express ; 20(25): 27847-65, 2012 Dec 03.
Article in English | MEDLINE | ID: mdl-23262730

ABSTRACT

We present both theoretically and experimentally a novel blind and fast method for estimating the State of Polarization (SOP) of a single carrier channel modulated in square Dual Polarization (DP) MQAM format for optical coherent receivers. The method can be used on system startup, for quick channel reconfiguration, or for burst mode receivers. It consists of converting the received waveform from Jones to Stokes space and looping over an algorithm until a unitary polarization derotation matrix is estimated. The matrix is then used to initialize the center taps of the subsequent classical decision-directed stochastic gradient algorithm (DD-LMS). We present experimental comparisons of the initial Bit Error Rate (BER) and the speed of convergence of this blind Stokes space polarization recovery (PR) technique against the common Constant Modulus Algorithm (CMA). We demonstrate that this technique works on any square DP-MQAM format by presenting experimental results for DP-4QAM, -16QAM and -64QAM at varying distances and baud rates. We additionally numerically assess the technique for varying differential group delays (DGD) and sampling offsets on 28 Gbaud DP-4QAM format and show fast polarization recovery for instantaneous DGD as high as 90% of symbol duration. We show that the convergence time of this blind PR technique does not depend on the initial SOP as CMA does and allows switching to DD-LMS faster by more than an order of magnitude. For DP-4QAM, it shows a convergence time of 5.9 ns, which is much smaller than the convergence time of recent techniques using modified CMA algorithms for quicker convergence. BER of the first 20 × 10(3) symbols is always smaller by several factors for DP-16QAM and -64QAM but not always for DP-4QAM.


Subject(s)
Algorithms , Models, Theoretical , Optics and Photonics/instrumentation , Telecommunications/instrumentation , Artifacts , Equipment Design , Light , Optics and Photonics/methods , Stochastic Processes
17.
Opt Express ; 20(26): B171-80, 2012 Dec 10.
Article in English | MEDLINE | ID: mdl-23262849

ABSTRACT

We propose a training symbol based channel estimation (TS-EST) algorithm that estimates the 2 × 2 Jones channel matrix. The estimated matrix entries are then used as the initial center taps of the 2 × 2 butterfly equalizer. Employing very few training symbols for TS-EST, ultrafast polarization tracking is achieved and tap update can be initially pursued using the decision-directed least mean squares (DD-LMS) algorithm to mitigate residual intersymbol interference (ISI). We experimentally verify the proposed TS-EST algorithm for 112 Gbps PDM-QPSK and 224 Gbps PDM-16QAM systems using 10 and 40 training symbols for TS-EST, respectively. Steady-state and transient bit error rates (BERs) achieved using the TS-EST algorithm are compared to those obtained using the constant modulus algorithm (CMA) and the training symbol least mean squares (TS-LMS) algorithm and results show that the proposed TS-EST algorithm provides the same steady-state BER with a superior convergence speed. Also, the tolerance of the proposed TS-EST algorithm to laser phase noise and fiber nonlinearity is experimentally verified. Finally, we show by simulation that the superior tracking speed of the TS-EST algorithm allows not only for initial polarization tracking but also for tracking fast polarization transients if four training symbols are periodically sent during steady-state operation with an overhead as low as 0.57%.

18.
Opt Express ; 20(26): B439-44, 2012 Dec 10.
Article in English | MEDLINE | ID: mdl-23262885

ABSTRACT

We report on the experimental demonstration of single channel 28 Gbaud QPSK and 16-QAM zero-guard-interval (ZGI) CO-OFDM transmission with only 1.34% overhead for OFDM processing. The achieved transmission distance is 5120 km for QPSK assuming a 7% forward error correction (FEC) overhead, and 1280 km for 16-QAM assuming a 20% FEC overhead. We also demonstrate the improved tolerance of ZGI CO-OFDM to residual inter-symbol interference compared to reduced-guard-interval (RGI) CO-OFDM. In addition, we report an 8-channel wavelength-division multiplexing (WDM) transmission of 28 Gbaud QPSK ZGI CO-OFDM signals over 4160 km.

19.
Opt Express ; 20(17): 19599-609, 2012 Aug 13.
Article in English | MEDLINE | ID: mdl-23038601

ABSTRACT

In this paper, we present a carrier phase recovery (CPR) algorithm using a modified superscalar parallelization based phase locked loop (M-SSP-PLL) combined with a maximum-likelihood (ML) phase estimation. Compared to the original SSP-PLL, M-SSP-PLL + ML reduces the required buffer size using a novel superscalar structure. In addition, by removing the differential coding/decoding and employing ML phase recovery it also improves the performance. In simulation, we show that the laser linewidth tolerance of M-SSP-PLL + ML is comparable to blind phase search (BPS) algorithm, which is known to be one of the best CPR algorithms in terms of performance for arbitrary QAM formats. In 28 Gbaud QPSK (112 Gb/s) and 16-QAM (224 Gb/s), and 7 Gbaud 64-QAM (84 Gb/s) experiments, it is also demonstrated that M-SSP-PLL + ML can increase the transmission distance by at least 12% compared to BPS for each of them. Finally, the computational complexity is discussed and a significant reduction is shown for our algorithm with respect to BPS.


Subject(s)
Algorithms , Optical Devices , Signal Processing, Computer-Assisted , Telecommunications , Feedback
20.
Opt Express ; 20(14): 14825-32, 2012 Jul 02.
Article in English | MEDLINE | ID: mdl-22772177

ABSTRACT

We experimentally investigate the performance of a low-complexity non-iterative phase noise induced inter-carrier interference (ICI) compensation algorithm in reduced-guard-interval dual-polarization coherent-optical orthogonal-frequency-division-multiplexing (RGI-DP-CO-OFDM) transport systems. This interpolation-based ICI compensator estimates the time-domain phase noise samples by a linear interpolation between the CPE estimates of the consecutive OFDM symbols. We experimentally study the performance of this scheme for a 28 Gbaud QPSK RGI-DP-CO-OFDM employing a low cost distributed feedback (DFB) laser. Experimental results using a DFB laser with the linewidth of 2.6 MHz demonstrate 24% and 13% improvement in transmission reach with respect to the conventional equalizer (CE) in presence of weak and strong dispersion-enhanced-phase-noise (DEPN), respectively. A brief analysis of the computational complexity of this scheme in terms of the number of required complex multiplications is provided. This practical approach does not suffer from error propagation while enjoying low computational complexity.

SELECTION OF CITATIONS
SEARCH DETAIL
...