Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
PLoS One ; 18(10): e0292448, 2023.
Article in English | MEDLINE | ID: mdl-37796781

ABSTRACT

Metabolic syndrome is a multifactorial disease with high prevalence worldwide. It is related to cardiovascular disease, diabetes, and obesity. Approximately 80% of patients with metabolic syndrome have some degree of fatty liver disease. An adenosine derivative (IFC-305) has been shown to exert protective effects in models of liver damage as well as on elements involved in central metabolism; therefore, here, we evaluated the effect of IFC-305 in an experimental model of metabolic syndrome in rats induced by a high-fat diet and 10% sucrose in drinking water for 18 weeks. We also determined changes in fatty acid uptake in the Huh-7 cell line. In the experimental model, increases in body mass, serum triglycerides and proinflammatory cytokines were induced in rats, and the adenosine derivative significantly prevented these changes. Interestingly, IFC-305 prevented alterations in glucose and insulin tolerance, enabling the regulation of glucose levels in the same way as in the control group. Histologically, the alterations, including mitochondrial morphological changes, observed in response to the high-fat diet were prevented by administration of the adenosine derivative. This compound exerted protective effects against metabolic syndrome, likely due to its action in metabolic regulation, such as in the regulation of glucose blood levels and hepatocyte fatty acid uptake.


Subject(s)
Metabolic Syndrome , Humans , Rats , Animals , Metabolic Syndrome/drug therapy , Metabolic Syndrome/prevention & control , Metabolic Syndrome/chemically induced , Sucrose/metabolism , Diet, High-Fat/adverse effects , Dietary Supplements , Adenosine/metabolism , Glucose/metabolism , Fatty Acids/metabolism , Liver/metabolism
2.
Biochem Biophys Res Commun ; 621: 144-150, 2022 09 17.
Article in English | MEDLINE | ID: mdl-35834923

ABSTRACT

Interferon stimulated gene 15 (ISG15) encodes a 15-kDa ubiquitin-like protein that acts as a posttranslational modifier of target proteins via ISGylation, a catalytic process similar to ubiquitination. Protein ISGylation is associated with the modulation of protein stability and protein-protein interactions. Furthermore, non-conjugated ISG15 (free ISG15) is secreted to act as a cytokine-like protein in some cellular contexts. The expression of ISG15 in some cancer types is dysregulated, but its expression status in glioblastoma, a malignant brain tumor highly aggressive and invasive, requires more studies. To explore the potential of ISG15 as a biomarker for glioblastoma, we first evaluated the ISG15 levels in glioblastoma cell lines and the effect of IFN-γ treatment on protein levels and localization of ISG15. In addition, we analyzed the ISG15 levels in glioblastoma samples compared to healthy brain tissue. Our results indicate that ISG15 levels are increased in glioblastoma and are upregulated in response to IFN-γ stimulus, suggesting that ISG15 and ISGylation may play a central role in glioblastoma progression. Thus, ISG15/ISGyaltion may be useful as biomarkers of this type of malignant brain tumors.


Subject(s)
Glioblastoma , Interferons , Antiviral Agents , Cytokines/metabolism , Glioblastoma/genetics , Humans , Interferons/metabolism , Ubiquitination , Ubiquitins/genetics , Ubiquitins/metabolism
3.
Biochim Biophys Acta Mol Cell Res ; 1869(5): 119222, 2022 05.
Article in English | MEDLINE | ID: mdl-35093454

ABSTRACT

The activation of Nuclear Factor, Erythroid 2 Like 2 - Kelch Like ECH Associated Protein 1 (NRF2-KEAP1) signaling pathway plays a critical dual role by either protecting or promoting the carcinogenesis process. However, its activation or nuclear translocation during hepatocellular carcinoma (HCC) progression has not been addressed yet. This study characterizes the subcellular localization of both NRF2 and KEAP1 during diethylnitrosamine-induced hepatocarcinogenesis in the rat. NRF2-KEAP1 pathway was continuously activated along with the increased expression of its target genes, namely Nqo1, Hmox1, Gclc, and Ptgr1. Similarly, the nuclear translocation of NRF2, MAF, and KEAP1 increased in HCC cells from weeks 12 to 22 during HCC progression. Likewise, colocalization of NRF2 with KEAP1 was higher in the cell nuclei of HCC neoplastic nodules than in surrounding cells. Moreover, immunofluorescence analyses revealed that the interaction of KEAP1 with filamentous Actin was disrupted in HCC cells. This disruption may be contributing to the release and nuclear translocation of NRF2 since the cortical actin cytoskeleton serves as anchoring of KEAP1. In conclusion, this evidence indicates that NRF2 is progressively activated and promotes the progression of experimental HCC.


Subject(s)
Carcinoma, Hepatocellular/pathology , Kelch-Like ECH-Associated Protein 1/metabolism , Liver Neoplasms/pathology , NF-E2-Related Factor 2/metabolism , Actin Cytoskeleton/metabolism , Animals , Carcinoma, Hepatocellular/chemically induced , Carcinoma, Hepatocellular/veterinary , Cell Nucleus/metabolism , Cyclooxygenase 1/genetics , Cyclooxygenase 1/metabolism , Diethylnitrosamine/toxicity , Disease Progression , Kelch-Like ECH-Associated Protein 1/genetics , Liver Neoplasms/chemically induced , Liver Neoplasms/veterinary , Membrane Proteins/genetics , Membrane Proteins/metabolism , NF-E2-Related Factor 2/genetics , Proto-Oncogene Proteins c-maf/genetics , Proto-Oncogene Proteins c-maf/metabolism , Rats , Rats, Inbred F344
4.
Sci Rep ; 11(1): 8032, 2021 04 13.
Article in English | MEDLINE | ID: mdl-33850190

ABSTRACT

Mammalian cytosine DNA methylation (5mC) is associated with the integrity of the genome and the transcriptional status of nuclear DNA. Due to technical limitations, it has been less clear if mitochondrial DNA (mtDNA) is methylated and whether 5mC has a regulatory role in this context. Here, we used bisulfite-independent single-molecule sequencing of native human and mouse DNA to study mitochondrial 5mC across different biological conditions. We first validated the ability of long-read nanopore sequencing to detect 5mC in CpG (5mCpG) and non-CpG (5mCpH) context in nuclear DNA at expected genomic locations (i.e. promoters, gene bodies, enhancers, and cell type-specific transcription factor binding sites). Next, using high coverage nanopore sequencing we found low levels of mtDNA CpG and CpH methylation (with several exceptions) and little variation across biological processes: differentiation, oxidative stress, and cancer. 5mCpG and 5mCpH were overall higher in tissues compared to cell lines, with small additional variation between cell lines of different origin. Despite general low levels, global and single-base differences were found in cancer tissues compared to their adjacent counterparts, in particular for 5mCpG. In conclusion, nanopore sequencing is a useful tool for the detection of modified DNA bases on mitochondria that avoid the biases introduced by bisulfite and PCR amplification. Enhanced nanopore basecalling models will provide further resolution on the small size effects detected here, as well as rule out the presence of other DNA modifications such as oxidized forms of 5mC.


Subject(s)
CpG Islands , DNA Methylation , Mitochondria , Animals , Cytosine , DNA, Mitochondrial , Mice , Nanopore Sequencing , Polymerase Chain Reaction , Sequence Analysis, DNA
5.
Am J Cancer Res ; 10(6): 1844-1856, 2020.
Article in English | MEDLINE | ID: mdl-32642295

ABSTRACT

Hepatocellular carcinoma (HCC) can be originated from various etiologies and is preceded mostly by cirrhosis. Unfortunately, there is no effective treatment due to its late prognosis. Alterations in autophagy have been reported during the development and progression of HCC. Autophagy allows for the maintenance of a positive energy balance and the proper functioning of organelles through the selective degradation of cellular components. It has been demonstrated that autophagy suppresses spontaneous tumorigenesis in the liver. Therefore, autophagy has become a therapeutic target for effective HCC therapies. We have previously demonstrated that the adenosine-derived compound, IFC-305, has a chemopreventive effect on HCC, in addition to maintaining mitochondrial function in a sequential model of cirrhosis-HCC. Thus, the aim of this work was to determine if IFC-305 has an effect on autophagy in the sequential model of cirrhosis-HCC induced by diethylnitrosamine or in vitro in the HCC cell line HepG2 and mouse embryonic fibroblasts. The results of this work showed that IFC-305 modifies the levels of the BECN1, p62/SQSTM1 and LC3-II proteins that play an important role in the autophagic process. In vivo, IFC-305 regulates the levels of the PINK1 and PARKIN proteins that specifically mark mitochondria for repair or degradation. In the HepG2 cell line, its effect was accompanied by a decrease in cell viability. Interestingly, in nontumoral cells the time to autophagy induction was different compared to the HepG2 cells. This study suggests that autophagy induction may be part of the mechanism by which IFC-305 maintains mitochondrial function, thereby facilitating the prevention and reversal of HCC.

6.
Sci Rep ; 10(1): 7822, 2020 05 08.
Article in English | MEDLINE | ID: mdl-32385352

ABSTRACT

A basic question linked to differential patterns of gene expression is how cells reach different fates despite using the same DNA template. Since 5-hydroxymethylcytosine (5hmC) emerged as an intermediate metabolite in active DNA demethylation, there have been increasing efforts to elucidate its function as a stable modification of the genome, including a role in establishing such tissue-specific patterns of expression. Recently we described TET1-mediated enrichment of 5hmC on the promoter region of the master regulator of hepatocyte identity, HNF4A, which precedes differentiation of liver adult progenitor cells in vitro. Here, we studied the genome-wide distribution of 5hmC at early in vitro differentiation of human hepatocyte-like cells. We found a global increase in 5hmC as well as a drop in 5-methylcytosine after one week of in vitro differentiation from bipotent progenitors, at a time when the liver transcript program is already established. 5hmC was overall higher at the bodies of overexpressed genes. Furthermore, by modifying the metabolic environment, an adenosine derivative prevents 5hmC enrichment and impairs the acquisition of hepatic identity markers. These results suggest that 5hmC could be a marker of cell identity, as well as a useful biomarker in conditions associated with cell de-differentiation such as liver malignancies.


Subject(s)
5-Methylcytosine/analogs & derivatives , Cell Differentiation/genetics , DNA Methylation/genetics , Hepatocyte Nuclear Factor 4/genetics , Mixed Function Oxygenases/genetics , Proto-Oncogene Proteins/genetics , 5-Methylcytosine/metabolism , DNA Demethylation , Gene Expression Regulation, Developmental/genetics , Genome/genetics , Hepatocytes/metabolism , Humans , Promoter Regions, Genetic/genetics , Stem Cells/metabolism
7.
PLoS One ; 15(2): e0228729, 2020.
Article in English | MEDLINE | ID: mdl-32053633

ABSTRACT

BACKGROUND: There is a correlation between the endocannabinoid system and hepatic fibrosis based on the activation of CB1 and CB2 receptors; where CB1 has profibrogenic effects. Gene therapy with a plasmid carrying a shRNA for CB1 delivered by hydrodynamic injection has the advantage of hepatic tropism, avoiding possible undesirable effects of CB1 pharmacological inhibition. OBJECTIVE: To evaluate hydrodynamics-based liver transfection in an experimental model of liver cirrhosis of a plasmid with the sequence of a shRNA for CB1 and its antifibrogenic effects. METHODS: Three shRNA (21pb) were designed for blocking CB1 mRNA at positions 877, 1232 and 1501 (pshCB1-A, B, C). Sequences were cloned in the pENTR™/U6. Safety was evaluated monitoring CB1 expression in brain tissue. The silencing effect was determined in rat HSC primary culture and CCl4 cirrhosis model. Hydrodynamic injection in cirrhotic liver was through iliac vein and with a dose of 3mg/kg plasmid. Serum levels of liver enzymes, mRNA levels of TGF-ß1, Col IA1 and α-SMA and the percentage of fibrotic tissue were analyzed. RESULTS: Hydrodynamic injection allows efficient CB1 silencing in cirrhotic livers and pshCB1-B (position 1232) demonstrated the main CB1-silencing. Using this plasmid, mRNA level of fibrogenic molecules and fibrotic tissue considerably decrease in cirrhotic animals. Brain expression of CB1 remained unaltered. CONCLUSION: Hydrodynamics allows a hepatotropic and secure transfection in cirrhotic animals. The sequence of the shCB1-B carried in a plasmid or any other vector has the potential to be used as therapeutic strategy for liver fibrosis.


Subject(s)
Gene Silencing , Hydrodynamics , Liver Cirrhosis/pathology , RNA, Small Interfering/metabolism , Receptor, Cannabinoid, CB1/metabolism , Actins/genetics , Actins/metabolism , Alanine Transaminase/blood , Alanine Transaminase/metabolism , Animals , Aspartate Aminotransferases/blood , Aspartate Aminotransferases/metabolism , Brain/metabolism , Cells, Cultured , Disease Models, Animal , Hepatic Stellate Cells/cytology , Hepatic Stellate Cells/metabolism , Liver/metabolism , Male , Plasmids/metabolism , RNA, Small Interfering/administration & dosage , Rats , Rats, Wistar , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Receptor, Cannabinoid, CB1/genetics , Transfection , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/metabolism
8.
Cancer Biol Ther ; 21(1): 81-94, 2020.
Article in English | MEDLINE | ID: mdl-31552788

ABSTRACT

S-adenosylmethionine (SAM), biosynthesis from methionine and ATP, is markedly decreased in hepatocellularular carcinoma (HCC) for a diminution in ATP levels, and the down regulation of the liver specific MAT1a enzyme. Its metabolic activity is very important in the transmethylation reactions, the methionine cycle, the biosynthesis of glutathione (GSH) and the polyamine pathway, which are markedly affected in the HCC. The chemo-preventive effect of IFC305 in HCC induced by DEN, and the increase of ATP and SAM in CCl4-induced cirrhosis have been previously demonstrated. The aim of this work was to test whether this chemo-preventive effect is mediated by the induction of SAM biosynthesis and its metabolic flow. SAM hepatic levels and the methionine cycle were recovered with IFC305 treatment, restoring transmethylation and transsulfuration activities. IFC305 treatment, increased MAT1a levels and decrease MAT2a levels through modulation of their post-transcriptional regulation. This occurred through the binding of the AUF1 (binding factor 1 AU-rich sites) and HuR (human antigen R) ribonucleoproteins to Mat1a and Mat2a messenger RNAs, which maintained their nuclear localization. Finally, the compound inhibited the polyamine pathway favoring the recuperation of the normal methionine and one carbon cycle recuperating the metabolic flow of methionine, which probably facilitated its HCC chemo-preventive effect.


Subject(s)
Adenosine/analogs & derivatives , Carcinoma, Hepatocellular/drug therapy , Liver Neoplasms/drug therapy , Methionine Adenosyltransferase/metabolism , RNA-Binding Proteins/metabolism , S-Adenosylmethionine/metabolism , Adenosine/pharmacology , Animals , Apoptosis , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Cell Proliferation , Humans , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Male , Methionine Adenosyltransferase/genetics , RNA-Binding Proteins/genetics , Rats , Rats, Wistar , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
9.
Int Immunopharmacol ; 54: 12-23, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29100033

ABSTRACT

Cirrhosis is a liver pathology originated by hepatocytes, Kupffer and hepatic stellate cells interactions and transformations. This pathology is associated with inflammation and fibrosis, originated by molecular signals secreted by immunological and parenchymal cells, such as cytokines and chemokines, like IL-1ß, IL-6, TNF-α or MCP-1, driven by Kupffer cells signals. As part of inflammation resolution, the same activated Kupffer cells contribute to anti-inflammatory effects with IL-10 and MMP-9 secretion. In a Wistar rat model, cirrhosis induced with CCl4 is characterized by increased inflammatory cytokines, IL-6, IL-1ß, MCP-1, and TNF-α, in plasma and liver tissue. The IFC-305 compound, an adenosine derivative salt, reverses the cirrhosis in this model, suggesting that immune mechanisms related to inflammation should be explored. The IFC-305 reduced inflammatory cytokines, supporting the anti-inflammatory effects induced by the elevation of IL-10, as well as the reduction of M1 inflammatory macrophages (CD11b/c+/CD163+) and the increase of M2 anti-inflammatory macrophages (HIS36+/CD11b+), measured by flow cytometry. Furthermore, the IFC-305 enhances the metabolic activity of arginase and moderates the inducible nitric oxide synthetase, evaluated through biochemical and immunohistochemical methods. These results contribute to understand the function of the IFC-305, which modulates the immune response in the Wistar rat model of CCl4-induced cirrhosis and support the hepatic protective action through an anti-inflammatory effect, mainly mediated by Kupffer cells.


Subject(s)
Adenosine/analogs & derivatives , Anti-Inflammatory Agents/therapeutic use , Fibrosis/drug therapy , Inflammation/drug therapy , Macrophages/drug effects , Adenosine/therapeutic use , Animals , Arginase/metabolism , CD11b Antigen/metabolism , CD11c Antigen/metabolism , Carbon Tetrachloride , Cell Differentiation , Cytokines/metabolism , Disease Models, Animal , Fibrosis/chemically induced , Fibrosis/immunology , Humans , Inflammation/chemically induced , Inflammation/immunology , Inflammation Mediators/metabolism , Macrophages/immunology , Male , Nitric Oxide Synthase Type II , Rats , Rats, Wistar , Th1-Th2 Balance
10.
J Cell Biochem ; 119(1): 401-413, 2018 01.
Article in English | MEDLINE | ID: mdl-28590037

ABSTRACT

The pathological characteristic of cirrhosis is scarring which results in a structurally distorted and dysfunctional liver. Previously, we demonstrated that Col1a1 and Pparg genes are deregulated in CCl4 -induced cirrhosis but their normal expression levels are recovered upon treatment with IFC-305, an adenosine derivative. We observed that adenosine was able to modulate S-adenosylmethionine-dependent trans-methylation reactions, and recently, we found that IFC-305 modulates HDAC3 expression. Here, we investigated whether epigenetic mechanisms, involving DNA methylation processes and histone acetylation, could explain the re-establishment of gene expression mediated by IFC-305 in cirrhosis. Therefore, Wistar rats were CCl4 treated and a sub-group received IFC-305 to reverse fibrosis. Global changes in DNA methylation, 5-hydroxymethylation, and histone H4 acetylation were observed after treatment with IFC-305. In particular, during cirrhosis, the Pparg gene promoter is depleted of histone H4 acetylation, whereas IFC-305 administration restores normal histone acetylation levels which correlates with an increase of Pparg transcript and protein levels. In contrast, the promoter of Col1a1 gene is hypomethylated during cirrhosis but gains DNA methylation upon treatment with IFC-305 which correlates with a reduction of Col1a1 transcript and protein levels. Our results suggest a model in which cirrhosis results in a general loss of permissive chromatin histone marks which triggers the repression of the Pparg gene and the upregulation of the Col1a1 gene. Treatment with IFC-305 restores epigenetic modifications globally and specifically at the promoters of Pparg and Col1a1 genes. These results reveal one of the mechanisms of action of IFC-305 and suggest a possible therapeutic function in cirrhosis. J. Cell. Biochem. 119: 401-413, 2018. © 2017 Wiley Periodicals, Inc.


Subject(s)
Adenosine/analogs & derivatives , Carbon Tetrachloride Poisoning/drug therapy , Epigenesis, Genetic/drug effects , Liver Cirrhosis, Experimental/drug therapy , Adenosine/pharmacology , Animals , Carbon Tetrachloride Poisoning/genetics , Carbon Tetrachloride Poisoning/metabolism , Collagen Type I/genetics , Collagen Type I/metabolism , Collagen Type I, alpha 1 Chain , Liver Cirrhosis, Experimental/genetics , Liver Cirrhosis, Experimental/metabolism , PPAR gamma/genetics , PPAR gamma/metabolism , Rats , Rats, Wistar
11.
Pathophysiology ; 24(4): 267-274, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28712861

ABSTRACT

The aim of this study was to investigate the utility of the Golgi-Cox method to characterize the distribution and morphological changes of the hepatic stellate cells (HSCs) in CCl4 liver damaged rats. Six-week-old male Wistar rats were injected with CCl4 for ten weeks. The livers were processed with the Golgi-Cox method, reticuline, and Massons Trichrome stains, and analyzed under light microscopy. Histological evaluation of livers was made through the METAVIR score. In normal livers, the HSCs show stellate form with abundant thin cytoplasmic processes, distributed into hepatic lobule, mainly in zone 1. In addition, an intricate and broad network of fibers with radial distribution from the central vein to the periphery of the hepatic lobule was observed. In CCl4 damaged livers, with METAVIR score I and II, HSCs showed a moderate increase in the soma size, in the cytoplasmic processes and in density, distributed in zone 2 and 3; changes associated with a decrease in network fibers. In livers with METAVIR score III and IV, the morphology changes of the HSCs consisted of a significant increase in the soma size, cut and fraying appearance of the emerging cytoplasmic processes, and a decrease in HSCs density, distributed mainly in zone 3, with a significant depletion of network fibers. Results show that Golgi-Cox stain is able to impregnate the HSCs and could be an additional tool to study the morphological changes of the HSCs in the different experimental pathological conditions of the liver.

12.
Front Immunol ; 8: 219, 2017.
Article in English | MEDLINE | ID: mdl-28316600

ABSTRACT

Regulatory T cells (Tregs) are considered key players in the prevention of allograft rejection in transplanted patients. Belatacept (BLT) is an effective alternative to calcineurin inhibitors that appears to preserve graft survival and function; however, the impact of this drug in the homeostasis of Tregs in transplanted patients remains controversial. Here, we analyzed the phenotype, function, and the epigenetic status of the Treg-specific demethylated region (TSDR) in FOXP3 of circulating Tregs from long-term kidney transplant patients under BLT or Cyclosporine A treatment. We found a significant reduction in the proportion of CD4+CD25hiCD127lo/-FOXP3+ T cells in all patients compared to healthy individual (controls). Interestingly, only BLT-treated patients displayed an enrichment of the CD45RA+ "naïve" Tregs, while the expression of Helios, a marker used to identify stable FOXP3+ thymic Tregs remained unaffected. Functional analysis demonstrated that Tregs from transplanted patients displayed a significant reduction in their suppressive capacity compared to Tregs from controls, which is associated with decreased levels of FOXP3 and CD25. Analysis of the methylation status of the FOXP3 gene showed that BLT treatment results in methylation of CpG islands within the TSDR, which could be associated with the impaired Treg suppression function. Our data indicate that analysis of circulating Tregs cannot be used as a marker for assessing tolerance toward the allograft in long-term kidney transplant patients. Trial registration number IM103008.

13.
Tumour Biol ; 39(2): 1010428317691190, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28231731

ABSTRACT

Hepatocellular carcinoma is one of the most common cancers, and approximately 80% develop from cirrhotic livers. We have previously shown that the aspartate salt of adenosine prevents and reverses carbon tetrachloride-induced liver fibrosis in rats. Considering the hepatoprotective role of this adenosine derivative in fibrogenesis, we were interested in evaluating its effect in a hepatocarcinogenesis model induced by diethylnitrosamine in rats, where multinodular cancer is preceded by cirrhosis. Rats were injected with diethylnitrosamine for 12 weeks to induce cirrhosis and for 16 weeks to induce hepatocarcinogenesis. Groups of rats were treated with aspartate salt of adenosine from the beginning of carcinogen administration for 12 or 18 weeks total, and another group received the compound from weeks 12 to 18. Fibrogenesis was estimated and the proportion of preneoplastic nodules and tumors was measured. The apoptotic and proliferation rates in liver tissues were evaluated, as well as the expression of cell signaling and cell cycle proteins participating in hepatocarcinogenesis. The adenosine derivative treatment reduced diethylnitrosamine-induced collagen expression and decreased the proportion of nodules positive for the tumor marker γ-glutamyl transferase. This compound down-regulated the expression of thymidylate synthase and hepatocyte growth factor, and augmented the protein level of the cell cycle inhibitor p27; these effects could be part of its chemopreventive mechanism. These findings suggest a hepatoprotective role of aspartate salt of adenosine that could be used as a therapeutic compound in the prevention of liver tumorigenesis as described earlier for hepatic fibrosis.


Subject(s)
Adenosine/analogs & derivatives , Liver Cirrhosis/complications , Liver Cirrhosis/drug therapy , Liver Neoplasms, Experimental/etiology , Liver Neoplasms, Experimental/prevention & control , Adenosine/pharmacology , Animals , Anticarcinogenic Agents/pharmacology , Diethylnitrosamine , Disease Models, Animal , Liver Cirrhosis/chemically induced , Male , Rats , Rats, Wistar
14.
J Pharmacol Exp Ther ; 361(2): 292-302, 2017 05.
Article in English | MEDLINE | ID: mdl-28209723

ABSTRACT

Background: Mitochondrion is an important metabolic and energetic organelle that regulates several cellular processes. Mitochondrial dysfunction has been related to liver diseases including hepatocellular carcinoma. As a result, the energetic demand is not properly supplied and mitochondrial morphologic changes have been observed, resulting in an altered metabolism. We previously demonstrated the chemopreventive effect of the hepatoprotector IFC-305. Aim: In this work we aimed to evaluate the functional, metabolic, and dynamic mitochondrial alterations in the sequential model of cirrhosis-hepatocellular carcinoma induced by diethylnitrosamine in rats and the possible beneficial effect of IFC-305. Methods: Experimental groups of rats were formed to induce cirrhosis-hepatocellular carcinoma and to assess the IFC-305 effect during cancer development and progression through the evaluation of functional, metabolic, and dynamic mitochondrial parameters. Results: In this experimental model, dysfunctional mitochondria were observed and suspension of the diethylnitrosamine treatment was not enough to restore them. Administration of IFC-305 maintained and restored the mitochondrial function and regulated parameters implicated in metabolism as well as the mitochondrial dynamics modified by diethylnitrosamine intoxication. Conclusion: This study supports IFC-305 as a potential hepatocellular carcinoma treatment or as an adjuvant in chemotherapy.


Subject(s)
Adenosine/analogs & derivatives , Anticarcinogenic Agents/therapeutic use , Carcinoma, Hepatocellular/prevention & control , Liver Cirrhosis, Experimental/prevention & control , Liver Neoplasms, Experimental/prevention & control , Mitochondria, Liver/drug effects , Adenosine/pharmacology , Adenosine/therapeutic use , Adenosine Triphosphate/biosynthesis , Animals , Anticarcinogenic Agents/pharmacology , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Electron Transport Complex I/metabolism , Liver Cirrhosis, Experimental/metabolism , Liver Cirrhosis, Experimental/pathology , Liver Neoplasms, Experimental/metabolism , Liver Neoplasms, Experimental/pathology , Male , Membrane Potential, Mitochondrial , Mitochondria, Liver/metabolism , Rats, Wistar
15.
Int J Hepatol ; 2012: 212530, 2012.
Article in English | MEDLINE | ID: mdl-23056951

ABSTRACT

Introduction. Cirrhosis is a chronic degenerative illness characterized by changes in normal liver architecture, failure of hepatic function, and impairment of proliferative activity. The aim of this study is to know how IFC-305 compound induces proliferation of the liver during reversion of cirrhosis. Methods. Once cirrhosis has been installed by CCl(4) treatment for 10 weeks in male Wistar rats, they were divided into four groups: two received saline and two received the compound; all were euthanized at 5 and 10 weeks of treatment. Liver homogenate, mitochondria, and nucleus were used to measure cyclins, CDKs, and cell cycle regulatory proteins PCNA, pRb, p53, E2F, p21, p27, HGF, liver ATP, and mitochondrial function. Results. Diminution and small changes were observed in the studied proteins in the cirrhotic animals without treatment. The IFC-305-treated rats showed a clear increase in most of the proteins studied mainly in PCNA and CDK6, and a marked increased in ATP and mitochondrial function. Discussion/Conclusion. IFC-305 induces a recovery of the cell cycle inhibition promoting recovery of DNA damage through the action of PCNA and p53. The increase in energy and preservation of mitochondrial function contribute to recovering the proliferative function.

16.
J Pharmacol Exp Ther ; 331(1): 122-32, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19638569

ABSTRACT

We have shown that adenosine administration is capable of reversing fibrosis in the carbon tetrachloride-induced rat cirrhotic liver, stimulating the diminished proliferative potential of the cirrhotic liver. To characterize adenosine actions on liver cellular proliferation, we used rats subjected to one-third partial hepatectomy (PH). In PH animals acutely administered with adenosine (25-200 mg/kg b.w.), parameters indicative of cell proliferation were determined. In addition, hepatocyte growth factor (HGF), epidermal growth factor, and transforming growth factor-alpha, cyclins, members of the E2F family, proto-oncogenes, and adenosine-receptors were determined through Western blot analyses. Adenosine (100 mg/kg body weight) induced an earlier increase in liver cell proliferation as evidenced by enhanced levels of proliferating cell nuclear antigen, nuclear Ki-67 antigen, and those for cyclins (D1, E, A, and B1), as well as by an increased mitotic index. These effects were also accompanied for a long-lasting increase of serum and liver levels of HGF and liver expression of c-Met and HGF liver activator. Adenosine effects on cell proliferation could be mediated by an early increase in E2F-1 and by that of c-Myc, despite the fact that phosphorylation of the Rb protein and expression of E2F-3 were decreased. Moreover, the liver amount of specific receptors for adenosine was not significantly changed by PH and/or adenosine treatment. In conclusion, these data suggest that adenosine actions can accelerate and increase proliferation in a "primed" liver, mainly through enhancing c-Myc, E2F family, cell-cycle cyclins, and HGF expression. Therefore, these pharmacological adenosine effects suggest a modulating role for the nucleoside on mitogenic events once the liver has been triggered to proliferate.


Subject(s)
Adenosine/administration & dosage , Cell Cycle/physiology , Hepatectomy , Liver Regeneration/physiology , Adenosine/physiology , Animals , Cell Cycle/drug effects , Cell Proliferation/drug effects , Hepatectomy/methods , Liver/drug effects , Liver/physiology , Liver/surgery , Liver Regeneration/drug effects , Male , Rats , Rats, Wistar
17.
Exp Biol Med (Maywood) ; 233(7): 827-39, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18445764

ABSTRACT

Hepatic fibrosis underlies most types of chronic liver diseases and is characterized by excessive deposition of extracellular matrix (ECM), altered liver architecture, and impaired hepatocyte proliferation; however, the fibrotic liver can still regenerate after partial hepatectomy (PH). Therefore, the present study was aimed at addressing whether a PH-induced regeneration normalizes ECM turnover and the possible involvement of hepatic stellate cells (HSC) during resolution of a pre-established fibrosis. Male Wistar rats were rendered fibrotic by intraperitoneal administration of swine serum for 9 weeks and subjected afterwards to 70% PH or sham-operation. Histological and morphometric analyses were performed, and parameters indicative of cell proliferation, collagen synthesis and degradation, and activation of HSC were determined. Liver collagen content was reduced to 75% after PH in cirrhotic rats when compared with sham-operated cirrhotic rats. The regenerating fibrotic liver oxidized actively free proline and had diminished transcripts for alpha-1 (I) collagen mRNA, resulting in decreased collagen synthesis. PH also increased collagenase activity, accounted for by higher amounts of pro-MMP-9, MMP-2, and MMP-13, which largely coincided with a lower expression of TIMP-1 and TIMP-2. Therefore, an early decreased collagen synthesis, mild ECM degradation, and active liver regeneration were followed by higher collagenolysis and limited deposition of ECM, probably associated with increased mitochondrial activity. Activated HSC readily increased during liver fibrosis and remained activated after liver regeneration, even during fibrosis resolution. In conclusion, stimulation of liver regeneration through PH restores the balance in ECM synthesis/degradation, leading to ECM remodeling and to an almost complete resolution of liver fibrosis. As a response to the regenerative stimulus, activated HSC seem to play a controlling role on ECM remodeling during experimental cirrhosis in rats. Therefore, pharmacological approaches for the resolution of liver fibrosis by blocking HSC activation should also evaluate possible effects on liver cell proliferation.


Subject(s)
Hepatectomy , Hepatocytes/pathology , Liver Cirrhosis/pathology , Liver Cirrhosis/physiopathology , Liver Regeneration/physiology , Animals , Cell Proliferation , Collagen/metabolism , Extracellular Matrix/metabolism , Liver/metabolism , Liver/pathology , Male , Matrix Metalloproteinase 13/metabolism , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , RNA, Messenger/metabolism , Rats , Rats, Wistar , Tissue Inhibitor of Metalloproteinase-1/metabolism , Tissue Inhibitor of Metalloproteinase-2/metabolism
19.
Lab Invest ; 83(11): 1669-79, 2003 Nov.
Article in English | MEDLINE | ID: mdl-14615420

ABSTRACT

We have proposed that controlled peroxidative modifications of membranes could be playing a role in the early steps of liver regeneration. Hence, lipid peroxidation (LP) was modified in vivo by treatment with vitamin E in rats subjected to partial hepatectomy (PH), and its influence on liver regeneration was evaluated. Our results, using several methods to monitor LP, indicate that vitamin E administration promoted a decreased LP rate in liver subcellular membranes. Vitamin E drastically diminished cytosolic LP, shifting earlier increased LP in plasma membranes, and promoted a higher increase of nuclear LP in animals subjected to PH. Pretreatment with vitamin E induced a striking reduction of liver mass recovery and nuclear bromodeoxyuridine labeling (clearly shown at 24 hours after surgery), as well as promoted a decreased expression of cyclin D1 and of the proliferating cell nuclear antigen after PH. These effects seem to lead to a decreased mitotic index at 48 hours after PH. Vitamin E pretreatment also diminished PH-induced hypoglycemia but elevated serum bilirubin level, which was not observed in PH animals without vitamin treatment. In conclusion, an enhanced but controlled LP seems to play a critical role during the early phases of liver regeneration. Decreasing magnitude or time course of the PH-promoted enhanced LP (at early post-PH stages) by in vivo treatment with vitamin E could promote an early termination of preparative cell events, which lead to the replicative phase, during PH-promoted liver proliferation. The latter could have a significant implication in the antitumorigenic effect ascribed to the treatment with vitamin E.


Subject(s)
Lipid Peroxidation , Liver Regeneration/drug effects , Liver/drug effects , alpha-Tocopherol/pharmacology , Administration, Oral , Animals , Bilirubin/blood , Bromodeoxyuridine/metabolism , Cell Fractionation , Cell Nucleus/drug effects , Cell Nucleus/metabolism , DNA/biosynthesis , Hepatectomy , Immunoenzyme Techniques , Intracellular Membranes/drug effects , Intracellular Membranes/metabolism , Lipid Peroxides/antagonists & inhibitors , Liver/metabolism , Liver/pathology , Liver Regeneration/physiology , Male , Mitotic Index , Proliferating Cell Nuclear Antigen/metabolism , Rats , Rats, Wistar , alpha-Tocopherol/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...