Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Blood ; 98(12): 3274-82, 2001 Dec 01.
Article in English | MEDLINE | ID: mdl-11719364

ABSTRACT

The cyclin-dependent kinase inhibitor p21(Waf-1/Cip-1) is expressed at high level during megakaryocyte differentiation, but its precise function remains unknown. In this study, it is confirmed that p21 was expressed at a high level in hypoploid (2N and 4N) and polyploid (at least 8N) human megakaryocytes derived from CD34(+) cells. A high expression of p27(Kip1), p16, cyclin E, and cyclin D3 was also found in both populations associated with a hypophosphorylated form of retinoblastoma protein, suggesting that the majority of hypoploid and polyploid megakaryocytes are G(1)-arrested cells. As human megakaryocytes grown in vitro present a defect in their polyploidization, the study switched to the murine model. The modal ploidy of megakaryocytes derived from lineage-negative cells was 32N, and an elevated expression of p21 was found in high-ploidy megakaryocytes. In addition, p21 and p27 were coexpressed in the majority of mature polyploid megakaryocytes. The p21 was detected by immunofluorescence in megakaryocytes derived from p53(-/-) mice, demonstrating a p53-independent regulation during megakaryocyte differentiation. Megakaryocytopoiesis of p21(-/-) mice was subsequently studied. No marked abnormality in the ploidy of primary or cultured megakaryocytes was detected. Overexpression of p21 in p21(-/-) or normal murine megakaryocytes and in human megakaryocytes showed in all these cases a marked inhibition in megakaryocyte polyploidization. In conclusion, while a reciprocal relation is observed between p21 levels in megakaryocytes and the cycling state of the cells, p21 is not essential for the determination of the ploidy profile in normal megakaryocytes in vivo. However, high levels of its expression in cultured megakaryocytes arrest the endomitotic cell cycle.


Subject(s)
Cell Cycle/physiology , Cyclins/physiology , Megakaryocytes/cytology , Mitosis , Animals , Antigens, CD34/analysis , Cell Cycle Proteins/analysis , Cell Differentiation , Cell Line , Cyclin D3 , Cyclin E/analysis , Cyclin-Dependent Kinase Inhibitor p16/analysis , Cyclin-Dependent Kinase Inhibitor p21 , Cyclin-Dependent Kinase Inhibitor p27 , Cyclins/analysis , Cyclins/genetics , Flow Cytometry , Fluorescent Antibody Technique , Gene Expression , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/immunology , Humans , Ki-67 Antigen/analysis , Megakaryocytes/chemistry , Mice , Mice, Inbred C57BL , Microscopy, Fluorescence , Ploidies , Polyethylene Glycols/pharmacology , Recombinant Proteins/pharmacology , Stem Cell Factor/pharmacology , Thrombopoietin/pharmacology , Transfection , Tumor Suppressor Protein p53/physiology , Tumor Suppressor Proteins/analysis
2.
Eur Cytokine Netw ; 12(4): 561-7, 2001.
Article in English | MEDLINE | ID: mdl-11781182

ABSTRACT

In TGF-beta1-knockout mice, TGF-beta1-null conceptuses die during embryonic development with a penetrance of lethality that depends on the mouse genetic background. Studies have suggested that transplacental passage of maternal TGF-beta1 could account for the rescue of some TGF-beta1-null embryos. Herein, we have used an adenovirus-based gene delivery system and a strain of mice where most TGF-beta1-null conceptuses die prior to parturition, to investigate whether an increase in maternal TGF-beta1 during pregnancy would rescue TGF-beta1-null embryos. A single intravenous injection of an adenovirus containing a modified version of TGF-beta1 cDNA (Ad-TGF-beta1S223/S225), coding for a biologically active form of the cytokine, induced a 20-fold increase in plasma TGF-beta1 (active and latent forms) levels for up to 3 months in adult mice. Similar levels of TGF-beta1 were detected in 13-day post coïtum (dpc) embryos from Ad-TGF-beta1-treated mothers, demonstrating an efficient maternal/fetal transfer of the cytokine. However, no increase in the frequencies of TGF-beta1-null neonates nor in day 11.5 dpc TGF-beta1-null conceptuses was observed despite elevated levels of TGF-beta1 delivered throughout gestation. In addition, we show that the high levels of TGF-beta1-titrated in the plasma from Ad-TGF-beta1S223/S225-treated mice were partly the consequence of a stimulation of an autocrine production by exogenous bioactive TGF-beta1. These results indicate that transplacental passage of TGF-beta1 was not effective in rescuing TGF-beta1-null conceptuses from embryonic lethality.


Subject(s)
Transforming Growth Factor beta/genetics , Adenoviridae , Animals , Base Sequence , Cell Differentiation , DNA Primers , Female , Genotype , Maternal-Fetal Exchange , Mice , Mice, Knockout , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL
...