Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Hum Gene Ther ; 34(17-18): 927-946, 2023 09.
Article in English | MEDLINE | ID: mdl-37597209

ABSTRACT

Lipoprotein lipase deficiency (LPLD) results from mutations within the lipoprotein lipase (LPL) gene that lead to a complete lack of catalytically active LPL protein. Glybera was one of the first adeno-associated virus (AAV) gene replacement therapy to receive European Medicines Agency regulatory approval for the treatment of LPLD. However, Glybera is no longer marketed potentially due to a combination of economical, manufacturing, and vector-related issues. The aim of this study was to develop a more efficacious AAV gene therapy vector for LPLD. Following preclinical biodistribution, efficacy and non-Good Laboratory Practice toxicity studies with novel AAV1 and AAV8-based vectors in mice, we identified AAV8 pVR59. AAV8 pVR59 delivered a codon-optimized, human gain-of-function hLPLS447X transgene driven by a CAG promoter in an AAV8 capsid. AAV8 pVR59 was significantly more efficacious, at 10- to 100-fold lower doses, compared with an AAV1 vector based on Glybera, when delivered intramuscularly or intravenously, respectively, in mice with LPLD. Efficient gene transfer was observed within the injected skeletal muscle and liver following delivery of AAV8 pVR59, with long-term correction of LPLD phenotypes, including normalization of plasma triglycerides and lipid tolerance, for up to 6 months post-treatment. While intramuscular delivery of AAV8 pVR59 was well tolerated, intravenous administration augmented liver pathology. These results highlight the feasibility of developing a superior AAV vector for the treatment of LPLD and provide critical insight for initiating studies in larger animal models. The identification of an AAV gene therapy vector that is more efficacious at lower doses, when paired with recent advances in production and manufacturing technologies, will ultimately translate to increased safety and accessibility for patients.


Subject(s)
Hyperlipoproteinemia Type I , Humans , Animals , Mice , Hyperlipoproteinemia Type I/genetics , Hyperlipoproteinemia Type I/therapy , Tissue Distribution , Transgenes , Administration, Intravenous
2.
Vaccine ; 41(13): 2198-2207, 2023 03 24.
Article in English | MEDLINE | ID: mdl-36842887

ABSTRACT

In this work, laboratory- and large-scale methods were tested for purification of a human immunodeficiency virus (HIV) vaccine candidate, based on recombinant vesicular stomatitis virus (rVSV). First step of the purification, the clarification of the rVSVs produced in serum-free cell culture medium, was tested by centrifugation and filtration using different filtration media and pore sizes (0.45 to 30 µm). To reduce the supernatant volume and process time, the clarified sample was concentrated by ultrafiltration either using tangential flow filtration or centrifugal-based filtration units, depending on the process scale. The final purification step at laboratory-scale, was carried out by density gradient ultracentrifugation, the recovery of which was compared with chromatographic purification at large-scale. The virus preparations were analyzed using dynamic light scattering to verify the virus size and transmission electron microscopy for purity and virus morphology. Density gradient ultracentrifugation allowed the recovery of ≥ 80% infectious particles and reduced the contaminant DNA and host cell proteins relatively to standard ultracentrifugation pelleting using a sucrose cushion. At large-scale, weak and strong anion-exchangers were tested and compared. The best columns allowed infectious virus recoveries as high as 77% and eliminated 92% of host cell proteins.


Subject(s)
AIDS Vaccines , Vesicular Stomatitis , Animals , Humans , Filtration/methods
3.
Hum Gene Ther ; 32(21-22): 1390-1402, 2021 11.
Article in English | MEDLINE | ID: mdl-33860673

ABSTRACT

The development of various manufacturing platforms and analytical technologies has substantially contributed to successfully translating the recombinant adeno-associated viral vector from the laboratory to the clinic. The active deployment of these analytical technologies for process and product characterization has helped define critical quality attributes and improve the quality of the clinical grade material. In this article, we report an anion exchange high-performance liquid chromatography (AEX-HPLC) method for relative and as well as absolute quantification of empty capsids (EC) and capsids encapsidating genetic material (CG) in purified preparations of adeno-associated virus (AAV) using serotype 5 as a model. The selection of optimal chromatographic buffer composition and step-gradient elution protocol offered baseline separation of EC and CG in the form of two peaks, as validated with the respective reference standards. The native amino acid fluorescence-based detection offered excellent linearity with a correlation coefficient of 0.9983 over two-log dilutions of the sample. The limit of detection and limit of quantification values associated with the total AAV5 capsid assay are 3.1E + 09 and 9.5E + 09, respectively. AEX-HPLC showed method comparability with the analytical ultracentrifugation (AUC) method for determination of relative proportions of EC and CG, supporting the reported HPLC method as an easy-to-access alternative to AUC with operational simplicity. Moreover, rapid and easy adaptation of this method to AAV8 material also demonstrated the robustness of the proposed approach.


Subject(s)
Capsid , Dependovirus , Anions , Chromatography, High Pressure Liquid , Dependovirus/genetics , Genetic Vectors/genetics , Serogroup
4.
Mol Ther Methods Clin Dev ; 21: 341-356, 2021 Jun 11.
Article in English | MEDLINE | ID: mdl-33898632

ABSTRACT

Removal of empty capsids from adeno-associated virus (AAV) manufacturing lots remains a critical step in the downstream processing of AAV clinical-grade batches. Because of similar physico-chemical characteristics, the AAV capsid populations totally lacking or containing partial viral DNA are difficult to separate from the desired vector capsid populations. Based on minute differences in density, ultracentrifugation remains the most effective separation method and has been extensively used at small scale but has limitations associated with availabilities and operational complexities in large-scale processing. In this paper, we report a scalable, robust, and versatile anion-exchange chromatography (AEX) method for removing empty capsids and subsequent enrichment of vectors of AAV serotypes 5, 6, 8, and 9. On average, AEX resulted in about 9-fold enrichment of AAV5 in a single step containing 80% ± 5% genome-containing vector capsids, as verified and quantified by analytical ultracentrifugation. The optimized process was further validated using AAV6, AAV8, and AAV9, resulting in over 90% vector enrichment. The AEX process showed comparable results not only for vectors with different transgenes of different sizes but also for AEX runs under different geometries of chromatographic media. The herein-reported sulfate-salt-based AEX process can be adapted to different AAV serotypes by appropriately adjusting elution conditions to achieve enriched vector preparations.

5.
Biotechnol J ; 16(4): e2000021, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33277815

ABSTRACT

Despite rapid progress in the field, scalable high-yield production of adeno-associated virus (AAV) is still one of the critical bottlenecks the manufacturing sector is facing. The insect cell-baculovirus expression vector system (IC-BEVS) has emerged as a mainstream platform for the scalable production of recombinant proteins with clinically approved products for human use. In this review, we provide a detailed overview of the advancements in IC-BEVS for rAAV production. Since the first report of baculovirus-induced production of rAAV vector in insect cells in 2002, this platform has undergone significant improvements, including enhanced stability of Bac-vector expression and a reduced number of baculovirus-coinfections. The latter streamlining strategy led to the eventual development of the Two-Bac, One-Bac, and Mono-Bac systems. The one baculovirus system consisting of an inducible packaging insect cell line was further improved to enhance the AAV vector quality and potency. In parallel, the implementation of advanced manufacturing approaches and control of critical processing parameters have demonstrated promising results with process validation in large-scale bioreactor runs. Moreover, optimization of the molecular design of vectors to enable higher cell-specific yields of functional AAV particles combined with bioprocess intensification strategies may also contribute to addressing current and future manufacturing challenges.


Subject(s)
Baculoviridae , Dependovirus , Animals , Baculoviridae/genetics , Cell Line , Dependovirus/genetics , Genetic Vectors/genetics , Humans , Insecta/genetics
6.
Vaccine ; 38(50): 7949-7955, 2020 11 25.
Article in English | MEDLINE | ID: mdl-33139138

ABSTRACT

Acquired Immune Deficiency Syndrome (AIDS) in humans is a result of the destruction of the immune system caused by Human Immunodeficiency Virus (HIV) infection. This serious epidemic is still progressing world-wide. Despite advances in treatment, a safe and effective preventive HIV vaccine is desired to combat this disease, and to save millions of lives. However, such a vaccine is not available yet although extensive amounts of resources in research and development have been invested over three decades. In light of the recently approved Ebola virus disease vaccine based on a recombinant vesicular stomatitis virus (rVSV-ZEBOV), we present the results of our work on three novel VSV-vectored HIV vaccine candidates. We describe the design, rescue, production and purification method and evaluate their immunogenicity in mice prior to preclinical studies that will be performed in non-human primates. The production of each of the three candidate vaccines (rVSV-B6-NL4.3Env/SIVtm, rVSV-B6-NL4.3Env/Ebtm and rVSV-B6-A74Env(PN6)/SIVtm) was evaluated in small scale in Vero cells and it was found that production kinetics on Vero cells vary depending on the HIV gp surface protein used. Purified virus preparations complied with the WHO restrictions for the residual DNA and host cell protein contents. Finally, when administered to mice, all three rVSV-HIV vaccine candidates induced an HIV gp140-specific antibody response.


Subject(s)
AIDS Vaccines , Ebola Vaccines , Ebolavirus , Hemorrhagic Fever, Ebola , Vesicular Stomatitis , Animals , Cell Culture Techniques , Chlorocebus aethiops , Genetic Vectors , Mice , Vaccines, Synthetic/genetics , Vero Cells
7.
Vaccine ; 37(44): 6624-6632, 2019 10 16.
Article in English | MEDLINE | ID: mdl-31548015

ABSTRACT

Ebola virus disease is an urgent international priority. Promising results for several vaccine candidates have been reported in non-human primate studies and clinical trials with the most promising being the rVSV-ZEBOV vaccine. In this study, we sought to produce rVSV-ZEBOV in HEK 293SF cells in suspension and serum-free media. The purpose of this study was to establish a process using the HEK 293SF production platform, optimise the production titre, demonstrate scalability and the efficiency of the generated material to elicit an immune reaction in an animal model. Critical process parameters were evaluated to maximize production yield and process robustness and the following operating conditions: 1-2 × 106 cells/mL grown in HyClone HyCell TransFx-H media infected at an MOI of 0.001 with a temperature shift to 34 °C during the production phase and a harvest of the product after 48 h. Using these conditions, scalability in a 3.5 L controlled bioreactor was shown reaching a titre of 1.19 × 108 TCID50/mL at the peak of production, the equivalent of 4165 doses of vaccine per litre. The produced virus was shown to be thermostable in the culture media and, when concentrated, purified and administered to mice, demonstrated the ability to induce a ZEBOV-specific immune response.


Subject(s)
Batch Cell Culture Techniques , Ebola Vaccines/biosynthesis , Ebola Vaccines/immunology , Ebolavirus/immunology , Vaccines, DNA/biosynthesis , Vaccines, DNA/immunology , Vesiculovirus , Animals , Antibodies, Viral/immunology , Bioreactors , Disease Models, Animal , Ebola Vaccines/administration & dosage , Ebola Vaccines/genetics , Ebolavirus/genetics , Female , HEK293 Cells , Hemorrhagic Fever, Ebola/immunology , Hemorrhagic Fever, Ebola/prevention & control , Humans , Immunization , Mice , Vaccines, DNA/administration & dosage , Vaccines, DNA/genetics , Vesiculovirus/genetics
8.
Mol Ther Methods Clin Dev ; 13: 279-289, 2019 Jun 14.
Article in English | MEDLINE | ID: mdl-30886878

ABSTRACT

Despite numerous advancements in production protocols, manufacturing AAV to meet exceptionally high demand (1016-1017 viral genomes [VGs]) in late clinical stages and for eventual systemic delivery poses significant challenges. Here, we report an efficient, simple, scalable, robust AAV5 production process utilizing the most recent modification of the OneBac platform. An increase in volumetric yield of genomic particles by ∼6-fold and functional particles by ∼20-fold was achieved by operating a high-cell-density process in shake flasks and bioreactors that involves an Sf9-based rep/cap stable cell line grown at a density of about 10 million cells/mL infected with a single baculovirus. The overall volumetric yields of genomic (VG) and bioactive particles (enhanced transducing units [ETUs]) in representative fedbatch bioreactor runs ranged from 2.5 to 3.5 × 1014 VG/L and from 1 to 2 × 1011 ETU/L. Analytical ultracentrifugation analyses of affinity-purified AAV vector samples from side-by-side batch and fedbatch production runs showed vector preparations with a full and empty particle distribution of 20%-30% genomic and 70%-80% empty particles. Moreover, the stoichiometric analysis of capsid proteins from fedbatch production in shake flask and bioreactor run samples demonstrated the incorporation of higher VP1 subunits, resulting in better functionality.

9.
Hum Gene Ther ; 29(4): 452-466, 2018 04.
Article in English | MEDLINE | ID: mdl-29179602

ABSTRACT

Vectored delivery of the ZMapp antibody cocktail (c2G4, c4G7, and c13C6) by using recombinant adeno-associated viruses (rAAVs) could be useful for preventive immunization against Ebola virus infections because rAAVs can generate long-term antibody expression. Three rAAVs (serotype 9) encoding chimeric ZMapp antibodies were produced by triple-plasmid transfection up to 10 L-scale in WAVE bioreactors using HEK293 cells grown in suspension/serum-free conditions. Efficacy of AAV-c2G4 via intravenous (i.v.), intramuscular (i.m.), and intranasal (i.n.) routes of administration was evaluated in mice with two different doses of 2.7 × 1010 and 13.0 × 1010 vector genomes (vg). The best protective efficacies after Ebola challenge were obtained with the i.v. and i.m. routes. Serum concentrations of ZMapp antibodies positively correlated with survivability. Efficacy of the rAAV-ZMapp cocktail was then evaluated at a higher dose of 30.0 × 1010 vg. It conferred a more robust protection (90% i.v. and 60% i.m.) than rAAV-c4G7 (30%) and rAAV-c13C6 (70%), both administered separately at the same dose. Delivery of rAAV-c2G4 alone achieved up to 100% protection (100% i.v. and 90% i.m.) at the same dose. In conclusion, the preventive treatment was effective in mice. However, no advantage was observed for using the rAAV-ZMapp cocktail in comparison to the utilization of the single rAAV-c2G4.


Subject(s)
Antibodies, Monoclonal/administration & dosage , Antibodies/administration & dosage , Dependovirus/genetics , Hemorrhagic Fever, Ebola/immunology , Administration, Intranasal , Administration, Intravenous , Animals , Antibodies/immunology , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/immunology , Ebolavirus/genetics , Ebolavirus/pathogenicity , Gene Transfer Techniques , Genetic Vectors/administration & dosage , Hemorrhagic Fever, Ebola/genetics , Hemorrhagic Fever, Ebola/prevention & control , Humans , Intramuscular Absorption , Mice
10.
Biotechnol J ; 12(3)2017 Mar.
Article in English | MEDLINE | ID: mdl-28177193

ABSTRACT

Manufacturing practices for recombinant adeno-associated viruses (AAV) have improved in the last decade through the development of new platforms in conjunction with better production and purification methods. In this review, we discuss the advantages and limitations of the most popular systems and methods employed with mammalian cell platforms. Methods and systems such as transient transfection, packaging and producer cells and adenovirus and herpes simplex virus are described. In terms of best production yields, they are comparable with about 104 -105 vector genomes produced per cell but transient transfection of HEK293 cells is by far the most commonly used. For small-scale productions, AAV can be directly purified from the producing cell lysate by ultracentrifugation on a CsCl or iodixanol-step gradient whereas large-scale purification requires a combination of multiple steps. Micro/macrofiltration (i.e. including tangential flow filtration and/or dead-end filtration) and chromatography based-methods are used for large-scale purification. Purified AAV products must then be quantified and characterized to ensure quality. Recent purification methods and current analytical techniques are reviewed here. Finally, AAV technology is very promising, but manufacturing improvements are still required to meet the needs of affordable, safe and effective AAV vectors essential for licensing of gene therapy clinical protocols.


Subject(s)
Dependovirus/genetics , Genetic Vectors/biosynthesis , Virus Cultivation/methods , Dependovirus/isolation & purification , Genetic Therapy , HEK293 Cells , Humans , Transfection
11.
Front Plant Sci ; 8: 2231, 2017.
Article in English | MEDLINE | ID: mdl-29375605

ABSTRACT

A Palmer amaranth (Amaranthus palmeri S. Watson) biotype has evolved resistance to photosystem (PS) II- (atrazine) and 4-hydroxyphenylpyruvate dioxygenase (HPPD)-inhibiting herbicides (mesotrione, tembotrione, and topramezone) in maize seed production field in Nebraska, USA. The objectives of this study were to determine the effect of soil residual pre-emergence (PRE) herbicides followed by (fb) tank-mixture of residual and foliar active post-emergence (POST) herbicides on PS-II- and HPPD-inhibitor-resistant Palmer amaranth control, maize yield, and net economic returns. Field experiments were conducted in a grower's field infested with PS II- and HPPD-inhibitor-resistant Palmer amaranth near Shickley in Fillmore County, Nebraska, USA in 2015 and 2016. The contrast analysis suggested that saflufenacil plus dimethenamid-P or pyroxasulfone plus saflufenacil applied PRE provided 80-82% Palmer amaranth control compared to 65 and 39% control with saflufenacil and pyroxasulfone applied alone at 3 weeks after PRE (WAPRE), respectively. Among the PRE fb POST herbicide programs, 95-98% Palmer amaranth control was achieved with pyroxasulfone plus safluefenacil, or saflufenacil plus dimethenamid-P applied PRE, fb glyphosate plus topramezone plus dimethenamid-P plus atrazine, glyphosate plus diflufenzopyr plus dicamba plus pyroxasulfone, glyphosate plus diflufenzopyr plus pendimethalin, or glyphosate plus diflufenzopyr plus dicamba plus atrazine applied POST at 3 weeks after POST (WAPOST) through maize harvest. Based on contrast analysis, PRE fb POST programs provided 77-83% Palmer amaranth control at 3 WAPOST through maize harvest compared to 12-15% control with PRE-only and 66-84% control with POST-only programs. Similarly, PRE fb POST programs provided 99% biomass reduction at 6 WAPOST compared to PRE-only (28%) and POST-only (87%) programs. PRE fb POST programs provided higher maize yield (13,617 kg ha-1) and net return (US $1,724 ha-1) compared to the PRE-only (2,656 kg ha-1; US $285 ha-1) and POST-only (11,429 kg ha-1; US $1,539 ha-1) programs. The results indicated that effective control of multiple herbicide-resistant Palmer amaranth can be achieved with PRE fb POST programs that include herbicides with overlapping residual activity to maintain season-long control.

12.
Int J Nanomedicine ; 7: 1575-86, 2012.
Article in English | MEDLINE | ID: mdl-22619514

ABSTRACT

BACKGROUND: Systemic delivery of small interfering RNA (siRNA) is limited by its poor stability and limited cell-penetrating properties. To overcome these limitations, we designed an efficient siRNA delivery system using polyethyleneimine-coated virus-like particles derived from adeno-associated virus type 2 (PEI-AAV2-VLPs). METHODS: AAV2-VLPs were produced in insect cells by infection with a baculovirus vector containing three AAV2 capsid genes. Using this method, we generated well dispersed AAV2-VLPs with an average diameter of 20 nm, similar to that of the wild-type AAV2 capsid. The nanoparticles were subsequently purified by chromatography and three viral capsid proteins were confirmed by Western blot. The negatively charged AAV2-VLPs were surface-coated with PEI to develop cationic nanoparticles, and the formulation was used for efficient siRNA delivery under optimized transfection conditions. RESULTS: PEI-AAV2-VLPs were able to condense siRNA and to protect it from degradation by nucleases, as confirmed by gel electrophoresis. siRNA delivery mediated by PEI-AAV2-VLPs resulted in a high transfection rate in MCF-7 breast cancer cells with no significant cytotoxicity. A cell death assay also confirmed the efficacy and functionality of this novel siRNA formulation towards MCF-7 cancer cells, in which more than 60% of cell death was induced within 72 hours of transfection. CONCLUSION: The present study explores the potential of virus-like particles as a new approach for gene delivery and confirms its potential for breast cancer therapy.


Subject(s)
Breast Neoplasms/therapy , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/therapeutic use , Animals , Breast Neoplasms/genetics , Capsid Proteins/chemistry , Capsid Proteins/genetics , Cell Line , Cell Line, Tumor , Dependovirus/chemistry , Dependovirus/genetics , Drug Carriers/chemistry , Drug Carriers/toxicity , Drug Delivery Systems , Female , Genetic Therapy , Humans , Nanomedicine , Nanoparticles/administration & dosage , Nanoparticles/therapeutic use , Polyethyleneimine/chemistry , Transfection
13.
J Gene Med ; 12(2): 157-67, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20101623

ABSTRACT

BACKGROUND: Recombinant adeno-associated virus (rAAV) are the most promising vectors for gene therapy. However, large-scale rAAV production remains a challenge for the translation of rAAV-based therapeutic strategies to the clinic. The baculovirus expression vector system (BEVS) has been engineered to produce high rAAV titers in serum-free suspension cultures of insect cells. METHODS: The typical approach of rAAV production in BEVS has been based on a synchronous infection with three baculoviruses at high multiplicity of infection (MOI) [>3 plaque forming units (pfu)/cell]. An alternative approach is to co-infect at low MOI (0.1 pfu/cell). Both strategies (high and low MOI) were compared at a cell density of 1.0 x 10(6) cells/ml in shake-flask experiments. To increase the rAAV titer, a low MOI combined with an initial cell density at infection of 5.0 x 10(6) cells/ml, in fed-batch mode, was evaluated. Subsequently, the production strategy was validated in 3-l bioreactor runs. RESULTS: An increase of 210% in the rAAV titer (4.7 x 10(11) enhanced transduction units/l) was observed when using low MOI, an effect primarily caused by the increase in cell density. The fed-batch approach resulted in a seven-fold increase of rAAV yield. Controlled operations in bioreactor contributed to further increase the rAAV yield (2.8 x 10(14) vector genomes/l) by 25% in comparison to the shake flask results. CONCLUSIONS: This high yield production process using low MOIs and a feeding strategy successfully addresses several limitations of current rAAV production in insect cells and contributes to position the BEVS system as one of the most efficient for large-scale manufacturing of rAAV vectors.


Subject(s)
Cell Culture Techniques/methods , Dependovirus/genetics , Genetic Vectors/biosynthesis , Insecta/cytology , Animals , Bioreactors , Cell Count , Cells, Cultured
14.
J Virol Methods ; 139(1): 61-70, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17055590

ABSTRACT

Adeno-associated virus (AAV) is making its place in gene therapy applications; however, the industry is still facing obstacles in producing a large quantity of highly purified material for clinical studies. Insect cell technology can be used to produce AAV to meet the current demand. During the purification process it was observed that there was a reduced recovery of AAV produced in insect cells, Spodoptera frugiperda (Sf9). It was assumed that the formation of AAV agglomerates and the interaction of AAV with other cellular components were major contributors to this loss. After studying different systems of extraction a sequence of treatment for primary recovery of AAV from cell paste was developed. This sequence was necessary to reduce the AAV losses and to increase the recovery. The purification method avoided the use of ultracentrifugation and adopted chromatographic methods for the purification of AAV. Primary recovery, ion exchange chromatography and hydrophobic interaction chromatography gave an overall yield of 75% from the extracted AAV. The purification process was based on chromatographic methods; therefore, it can be scaled up. Although this method was developed for AAV type 2, it is believed that this method could be modified easily to purify other AAV serotypes.


Subject(s)
Baculoviridae/genetics , Dependovirus/isolation & purification , Spodoptera/virology , Animals , Buffers , Chromatography, Ion Exchange , Genetic Vectors
15.
Biotechnol Prog ; 21(1): 154-60, 2005.
Article in English | MEDLINE | ID: mdl-15903253

ABSTRACT

Production of recombinant adeno-associated viral vectors using a baculovirus/insect cell system at various scales is presented. Shake flask studies were conducted to assess conditions to be used in bioreactors. Two insect cell lines, Trichoplusia ni (H5) and Spodoptera frugiperda (Sf9), were compared for their ability to produce rAAV-2 after infection with recombinant baculoviruses coding for the essential components of the vector. The effect of varying the ratio between individual baculoviruses and the effect of the overall multiplicity of infection (MOI), as well as the cell density at infection, were also examined. Infectious rAAV-2 particles were proportionally produced when increasing the individual MOI of BacRep virus up to 1.6. When equal amounts of each virus were used, a leveling effect occurred beyond an overall MOI of 5 and a maximum titer was obtained. Increasing the cell density at infection resulted in higher yields when infecting the cells in fresh medium; however, for the production of bioactive particles, an optimal peak cell density of approximately 1 x 10(6) cells/mL was observed without medium exchange. Infection in 3- and 20-L bioreactors was done at an overall MOI of 5 with a ratio of the three baculoviruses equal to 1:1:1. Under these conditions and infecting the cells in fresh medium, a total of approximately 2.2 x 10(12) infectious viral particles (bioactive particles) or 2.6 x 10(15) viral particles were produced in a 3-L bioreactor. Without replacing the medium at infection, similar titers were produced in 20 L. Our data demonstrates the feasibility of rAAV-2 production by BEVS at various scales in bioreactors and indicates that further optimization is required for production at high cell densities.


Subject(s)
Baculoviridae/metabolism , Bioreactors , Dependovirus/genetics , Dependovirus/metabolism , Genetic Vectors/biosynthesis , Genetic Vectors/genetics , Animals , Baculoviridae/genetics , Cell Count , Cell Culture Techniques/methods , Cells, Cultured , Culture Media, Serum-Free , Insecta , Recombinant Proteins/biosynthesis , Suspensions , Time Factors , Transfection
16.
Kidney Int ; 64(2): 451-8, 2003 Aug.
Article in English | MEDLINE | ID: mdl-12846740

ABSTRACT

BACKGROUND: It is currently impossible to reliably predict which diabetic patients will develop nephropathy and progress to kidney failure. Microalbuminuria, often regarded as a predictor of overt diabetic renal disease is, in fact, an indicator of established glomerular damage. We have shown that glomerular expression of the prosclerotic cytokine CCN2 (CTGF) is greatly up-regulated early in experimental and in human diabetes and mesangial cell exposure to CCN2 increases its production of extracellular matrix (ECM) molecules responsible for glomerulosclerosis. As an early marker, we therefore investigated the presence of CCN2 in urine and the relationship to diabetes and/or renal disease in an experimental model of diabetes and in a limited patient population. METHODS: Urine samples from (1) healthy rats, (2) rats made diabetic by streptozotocin (STZ), (3) healthy human volunteers, (4) diabetic patients with renal disease, and (5) diabetic patients without renal disease were examined by Western blotting and/or enzyme-linked immunosorbent assay (ELISA) for qualitative and quantitative analysis of the of CCN2. RESULTS: Low levels of urinary CCN2 were present in healthy, control rats, but were increased approximately sevenfold overall in STZ-diabetic animals. CCN2 levels were the highest at week 3 of diabetes, then decreased with time, but remained significantly elevated over controls even after 32 weeks. Consistently low levels of urinary CCN2 were also detected in healthy volunteers (mean value, 7.1 CCN2/mg creatinine). However, levels were elevated approximately sixfold in the majority of diabetic patients with nephropathy. A small number of the diabetic patients not yet exhibiting evidence of renal involvement demonstrated CCN2 urinary levels that were ninefold greater than controls. The remaining normoalbuminuric diabetic patients demonstrated CCN2 levels indistinguishable from those of healthy volunteers. Analysis by Western blotting confirmed the identity of the urinary CCN2. A molecular species equivalent to full-length CCN2 (37/39 kD doublet) was present in healthy controls. In contrast, the nephropathic group demonstrated multiple CCN2 bands. CONCLUSION: These findings support our hypothesis that CCN2 is up-regulated early in the evolution of glomerulosclerosis, including that of diabetes. We contend that urinary CCN2 may both stage nephropathy and predict those patients who are destined for progressive glomerulosclerosis and end-stage renal disease (ESRD). Cross-sectional and prospective studies of larger, well-defined diabetic patients groups will be required to prove this hypothesis, and are ongoing.


Subject(s)
Diabetic Nephropathies/diagnosis , Diabetic Nephropathies/urine , Immediate-Early Proteins/urine , Intercellular Signaling Peptides and Proteins/urine , Animals , Biomarkers , Connective Tissue Growth Factor , Diabetes Mellitus, Experimental/urine , Humans , Male , Pilot Projects , Predictive Value of Tests , Rats , Rats, Inbred F344
SELECTION OF CITATIONS
SEARCH DETAIL
...