Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
J Colloid Interface Sci ; 670: 409-416, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38772257

ABSTRACT

HYPOTHESIS: Supramolecular polymer bottlebrushes (SPBs) consist in the 1D self-assembly of building blocks composed of a self-assembling core with pendant polymer arms. Kinetic hurdles often hinder their stimuli-responsiveness in solution. Changing the nature of the solvent should alleviate these hurdles by modulating the self-association strength, leading to stimuli-responsive SPBs. EXPERIMENTS: The SPBs were formed, in various solvents, by hydrogen bond-driven self-assembly of an azobenzene-bisurea decorated with poly(ethylene oxide) polymer arms. The photo-isomerization of the azobenzene unit was studied by UV/visible spectroscopy and proton NMR spectroscopy, whereas the consequences on supramolecular self-assembly were studied by small angle neutron and X-ray scattering. FINDINGS: In water, the assembly was previously shown to be driven by both hydrogen-bonds and strong hydrophobic effects, the latter rendering the system kinetically frozen and the disassembly irreversible. Here we show that in organic solvents such as toluene or chloroform, reversible light-responsive dissociation is achieved. Solvophobic effects in these solvents are expected to be much weaker than in water, which probably allows reversibility of the light-response in the former solvents. The key role of the solvent on the reversibility of the process opens up new perspectives for the design of stimuli-responsive SPBs and their applications in various fields.

2.
Small ; 17(18): e2007702, 2021 05.
Article in English | MEDLINE | ID: mdl-33738928

ABSTRACT

Studying model nanoparticles is one approach to better understand the structural evolution of a catalyst during reactions. These nanoparticles feature well-defined faceting, offering the possibility to extract structural information as a function of facet orientation and compare it to theoretical simulations. Using Bragg Coherent X-ray Diffraction Imaging, the uniformity of electrochemically synthesized model catalysts is studied, here high-index faceted tetrahexahedral (THH) platinum nanoparticles at ambient conditions. 3D images of an individual nanoparticle are obtained, assessing not only its shape but also the specific components of the displacement and strain fields both at the surface of the nanocrystal and inside. The study reveals structural diversity of shapes and defects, and shows that the THH platinum nanoparticles present strain build-up close to facets and edges. A facet recognition algorithm is further applied to the imaged nanoparticles and provides facet-dependent structural information for all measured nanoparticles. In the context of strain engineering for model catalysts, this study provides insight into the shape-controlled synthesis of platinum nanoparticles with high-index facets.

3.
Nat Mater ; 20(4): 495-502, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33398118

ABSTRACT

Simultaneous manipulation of multiple boundary conditions in nanoscale heterostructures offers a versatile route to stabilizing unusual structures and emergent phases. Here, we show that a stable supercrystal phase comprising a three-dimensional ordering of nanoscale domains with tailored periodicities can be engineered in PbTiO3-SrRuO3 ferroelectric-metal superlattices. A combination of laboratory and synchrotron X-ray diffraction, piezoresponse force microscopy, scanning transmission electron microscopy and phase-field simulations reveals a complex hierarchical domain structure that forms to minimize the elastic and electrostatic energy. Large local deformations of the ferroelectric lattice are accommodated by periodic lattice modulations of the metallic SrRuO3 layers with curvatures up to 107 m-1. Our results show that multidomain ferroelectric systems can be exploited as versatile templates to induce large curvatures in correlated materials, and present a route for engineering correlated materials with modulated structural and electronic properties that can be controlled using electric fields.

4.
J Appl Crystallogr ; 53(Pt 1): 58-68, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-32047404

ABSTRACT

Silicon nanowire-based sensors find many applications in micro- and nano-electromechanical systems, thanks to their unique characteristics of flexibility and strength that emerge at the nanoscale. This work is the first study of this class of micro- and nano-fabricated silicon-based structures adopting the scanning X-ray diffraction microscopy technique for mapping the in-plane crystalline strain (∊044) and tilt of a device which includes pillars with suspended nanowires on a substrate. It is shown how the micro- and nanostructures of this new type of nanowire system are influenced by critical steps of the fabrication process, such as electron-beam lithography and deep reactive ion etching. X-ray analysis performed on the 044 reflection shows a very low level of lattice strain (<0.00025 Δd/d) but a significant degree of lattice tilt (up to 0.214°). This work imparts new insights into the crystal structure of micro- and nanomaterial-based sensors, and their relationship with critical steps of the fabrication process.

5.
ACS Appl Mater Interfaces ; 11(25): 22834-22839, 2019 Jun 26.
Article in English | MEDLINE | ID: mdl-31142109

ABSTRACT

InGaN/GaN double heterostructures and multiquantum wells (MQWs) have been successfully developed since more than 20 years for LED lightning applications. Recent developments show that state-of-the-art LEDs benefit from artificially generated V-pit defects. However, the control of structural and chemical properties plays a tremendous role. In this paper, we report on the lateral distribution of V-pit defects and photoluminescence of InGaN/GaN MQWs grown on thick GaN on patterned sapphire substrates. The synchrotron-based scanning X-ray diffraction microscopy technique K-map was employed to locally correlate these properties with the local tilt, strain, and composition of the InGaN/GaN MQW. Compositional fluctuation is the main factor for the variation of photoluminescence intensity and broadening. In turn, V-pit defects align along small-angle grain boundaries and their strain fields are identified as a reason for promoting the InGaN segregation process on a microscale.

6.
J Synchrotron Radiat ; 26(Pt 2): 571-584, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30855270

ABSTRACT

The ID01 beamline has been built to combine Bragg diffraction with imaging techniques to produce a strain and mosaicity microscope for materials in their native or operando state. A scanning probe with nano-focused beams, objective-lens-based full-field microscopy and coherent diffraction imaging provide a suite of tools which deliver micrometre to few nanometre spatial resolution combined with 10-5 strain and 10-3 tilt sensitivity. A detailed description of the beamline from source to sample is provided and serves as a reference for the user community. The anticipated impact of the impending upgrade to the ESRF - Extremely Brilliant Source is also discussed.

7.
Nanoscale ; 11(1): 331-338, 2018 Dec 20.
Article in English | MEDLINE | ID: mdl-30534681

ABSTRACT

The catalytic activity of metal nanoparticles can be altered by applying strain, which changes the crystalline lattice spacing and modifies the electronic properties of the metal. Understanding the role of elastic strain during catalytic reactions is thus crucial for catalyst design. Here, we show how single highly faceted Pt nanoparticles expand or contract upon interaction with different gas atmospheres using in situ nano-focused coherent X-ray diffraction imaging. We also demonstrate inter-particle heterogeneities, as they differ in development of strain under CO oxidation reaction conditions. The reported observations offer new insights into the design of catalysts exploiting strain effects.

8.
Angew Chem Weinheim Bergstr Ger ; 128(26): 7622-7626, 2016 06 20.
Article in English | MEDLINE | ID: mdl-27478278

ABSTRACT

Structure-activity relationships in heterogeneous catalysis are challenging to be measured on a single-particle level. For the first time, one X-ray beam is used to determine the crystallographic structure and reactivity of a single zeolite crystal. The method generates µm-resolved X-ray diffraction (µ-XRD) and X-ray excited optical fluorescence (µ-XEOF) maps of the crystallinity and Brønsted reactivity of a zeolite crystal previously reacted with a styrene probe molecule. The local gradients in chemical reactivity (derived from µ-XEOF) were correlated with local crystallinity and framework Al content, determined by µ-XRD. Two distinctly different types of fluorescent species formed selectively, depending on the local zeolite crystallinity. The results illustrate the potential of this approach to resolve the crystallographic structure of a porous material and its reactivity in one experiment via X-ray induced fluorescence of organic molecules formed at the reactive centers.

9.
Ultramicroscopy ; 169: 89-97, 2016 10.
Article in English | MEDLINE | ID: mdl-27459269

ABSTRACT

The investigation of the microstructure in functional, polycrystalline thin films is an important contribution to the enhanced understanding of structure-property relationships in corresponding devices. Linear and planar defects within individual grains may affect substantially the performance of the device. These defects are closely related to strain distributions. The present work compares electron and X-ray diffraction as well as Raman microspectroscopy, which provide access to microstrain distributions within individual grains. CuInSe2 thin films for solar cells are used as a model system. High-resolution electron backscatter diffraction and X-ray microdiffraction as well as Raman microspectroscopy were applied for this comparison. Consistently, microstrain values were determined of the order of 10(-4) by these three techniques. However, only electron backscatter diffraction, X-ray microdiffraction exhibit sensitivities appropriate for mapping local strain changes at the submicrometer level within individual grains in polycrystalline materials.

10.
Angew Chem Int Ed Engl ; 55(26): 7496-500, 2016 06 20.
Article in English | MEDLINE | ID: mdl-27145171

ABSTRACT

Structure-activity relationships in heterogeneous catalysis are challenging to be measured on a single-particle level. For the first time, one X-ray beam is used to determine the crystallographic structure and reactivity of a single zeolite crystal. The method generates µm-resolved X-ray diffraction (µ-XRD) and X-ray excited optical fluorescence (µ-XEOF) maps of the crystallinity and Brønsted reactivity of a zeolite crystal previously reacted with a styrene probe molecule. The local gradients in chemical reactivity (derived from µ-XEOF) were correlated with local crystallinity and framework Al content, determined by µ-XRD. Two distinctly different types of fluorescent species formed selectively, depending on the local zeolite crystallinity. The results illustrate the potential of this approach to resolve the crystallographic structure of a porous material and its reactivity in one experiment via X-ray induced fluorescence of organic molecules formed at the reactive centers.

11.
ACS Appl Mater Interfaces ; 7(48): 26696-700, 2015 Dec 09.
Article in English | MEDLINE | ID: mdl-26541318

ABSTRACT

We report a detailed advanced materials characterization study on 40 nm thick strained germanium (Ge) layers integrated on 300 mm Si(001) wafers via strain-relaxed silicon-germanium (SiGe) buffer layers. Fast-scanning X-ray microscopy is used to directly image structural inhomogeneities, lattice tilt, thickness, and strain of a functional Ge layer down to the sub-micrometer scale with a real space step size of 750 µm. The structural study shows that the metastable Ge layer, pseudomorphically grown on Si(0.3)Ge(0.7), exhibits an average compressive biaxial strain of -1.27%. By applying a scan area of 100 × 100 µm(2), we observe microfluctuations of strain, lattice tilt, and thickness of ca. ±0.03%, ±0.05°, and ±0.8 nm, respectively. This study confirms the high materials homogeneity of the compressively strained Ge layer realized by the step-graded SiGe buffer approach on 300 mm Si wafers. This presents thus a promising materials science approach for advanced sub-10 nm complementary metal oxide-semiconductor applications based on strain-engineered Ge transistors to outperform current Si channel technologies.

12.
ACS Appl Mater Interfaces ; 7(17): 9031-7, 2015 May 06.
Article in English | MEDLINE | ID: mdl-25871429

ABSTRACT

Advanced semiconductor heterostructures are at the very heart of many modern technologies, including aggressively scaled complementary metal oxide semiconductor transistors for high performance computing and laser diodes for low power solid state lighting applications. The control of structural and compositional homogeneity of these semiconductor heterostructures is the key to success to further develop these state-of-the-art technologies. In this article, we report on the lateral distribution of tilt, composition, and strain across step-graded SiGe strain relaxed buffer layers on 300 mm Si(001) wafers treated with and without chemical-mechanical polishing. By using the advanced synchrotron based scanning X-ray diffraction microscopy technique K-Map together with micro-Raman spectroscopy and Atomic Force Microscopy, we are able to establish a partial correlation between real space morphology and structural properties of the sample resolved at the micrometer scale. In particular, we demonstrate that the lattice plane bending of the commonly observed cross-hatch pattern is caused by dislocations. Our results show a strong local correlation between the strain field and composition distribution, indicating that the adatom surface diffusion during growth is driven by strain field fluctuations induced by the underlying dislocation network. Finally, it is revealed that a superficial chemical-mechanical polishing of cross-hatched surfaces does not lead to any significant change of tilt, composition, and strain variation compared to that of as-grown samples.

13.
J Biomed Mater Res B Appl Biomater ; 101(1): 124-30, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23077086

ABSTRACT

Customized one-component dental implants have been fabricated using Electron Beam Melting(®) (EBM(®)), which is a rapid prototyping and manufacturing technique. The goal of our study was to determine the effect of electron beam orientation on the fatigue resistance of EBM Ti-6Al-4V ELI alloy. EBM technique was used to fabricate Ti-6Al-4V ELI alloy blocks, which were cut into rectangular beam specimens with dimensions of 25 × 4 × 3 mm, such that electron beam orientation was either parallel (group A) or perpendicular (group B) to the long axis of the specimens. The specimens were subjected to cyclic fatigue (R = 0.1) in four-point flexure under ambient conditions using various stress amplitudes below the yield stress. The fatigue lifetime data were fit to an inverse power law-Weibull model to predict the peak stress corresponding to failure probabilities of 5 and 63% at 2M cycles (σ(max, 5%) and σ(max, 63%)). Groups A and B did not have significantly different Weibull modulus, m (p > 0.05). The specimens with parallel orientation showed significantly higher σ(max, 63%) (p ≤ 0.05), but there was no significant difference in the σ(max, 5%) (p > 0.05). Thus, it can be concluded that the fatigue resistance of the material was greatest when the electron beam orientation was perpendicular to the direction of crack propagation.


Subject(s)
Dental Implants , Materials Testing , Titanium , Alloys , Electrons , Tensile Strength
14.
Phys Rev E Stat Nonlin Soft Matter Phys ; 82(1 Pt 1): 011706, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20866634

ABSTRACT

We study the smectic director structure of the rodlike liquid crystal 4-n-dodecyl-4'-cyanobiphenyl (12CB) confined in cylindrical cavities of 200 nm diameter in porous alumina templates by means of combined broadband dielectric spectroscopy, optical birefringence, and neutron scattering measurements. We show that the collective molecular orientation differs between entering the smectic A phase upon cooling from the isotropic state and entering the same phase upon heating while melting the confined crystal. We discuss this collective molecular realignment in terms of a competition between weak planar anchoring at the p-Al2O3/12CB interface and a preferred texture typical of the crystallization of rodlike molecules in nanochannels (Bridgman growth).

15.
Phys Rev E Stat Nonlin Soft Matter Phys ; 81(3 Pt 1): 031703, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20365747

ABSTRACT

We report combined optical birefringence and neutron scattering measurements on the liquid crystal 12CB nanoconfined in mesoporous silicon layers. This liquid crystal exhibits strong nematic-smectic coupling responsible for a discontinuous isotropic-to-smectic phase transition in the bulk state. Confined in porous silicon, 12CB is subjected to strong anisotropic quenched disorder: a short-ranged smectic state evolves out of a paranematic phase. This transformation appears continuous, losing its bulk first-order character. This contrasts with previously reported observations on liquid crystals under isotropic quenched disorder. In the low temperature phase, both orientational and translational order parameters obey the same power law.


Subject(s)
Liquid Crystals/chemistry , Models, Chemical , Anisotropy , Computer Simulation , Phase Transition
SELECTION OF CITATIONS
SEARCH DETAIL
...