Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
J Phys Chem B ; 127(6): 1338-1349, 2023 02 16.
Article in English | MEDLINE | ID: mdl-36716437

ABSTRACT

The Cu/Zn Human Superoxide Dismutase (SOD1) is a dimeric metalloenzyme whose genetic mutations are directly related to amyotrophic lateral sclerosis (ALS), so understanding its folding mechanism is of fundamental importance. Currently, the SOD1 dimer formation is studied via molecular dynamics simulations using a simplified structure-based model and an all-atom model. Results from the simplified model reveal a mechanism dependent on distances between monomers, which are limited by constraints to mimic concentration dependence. The stability of intermediates (during the int state) is significantly affected by this distance, as well as by the presence of two folded monomers prior to dimer formation. The kinetics of interface formation are also highly dependent on the separation distance. The folding temperature of the dimer is about 4.2% higher than that of the monomer, a value not too different from experimental data. All-atom simulations on the apo dimer give binding free energy between monomers similar to experimental values. An intermediate state is evident for the apo form at a separation distance between monomers slightly larger than the native distance which has little formed interface between monomers. We have shown that this intermediate is stabilized by non-native intra- and intercontacts.


Subject(s)
Amyotrophic Lateral Sclerosis , Superoxide Dismutase , Humans , Amyotrophic Lateral Sclerosis/genetics , Dimerization , Molecular Dynamics Simulation , Mutation , Protein Folding , Superoxide Dismutase/chemistry , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism , Thermodynamics
2.
J Phys Chem B ; 125(42): 11673-11686, 2021 10 28.
Article in English | MEDLINE | ID: mdl-34644091

ABSTRACT

Molecular crowding is a ubiquitous phenomenon in biological systems, with significant consequences on protein folding and stability. Small compounds, such as the osmolyte trimethylamine N-oxide (TMAO), can also present similar effects. To analyze the effects arising from these solute-like molecules, we performed a series of crowded coarse-grained folding simulations. Two well-known proteins were chosen, CI2 and SH3, modeled by the alpha-carbon-structure-based model. In the simulations, the crowding molecules were represented by low-sized neutral atom beads in different concentrations. The results show that a low level of the volume fraction occupied by neutral agents can change protein stability and folding kinetics for the two systems. However, the kinetics were shown to be unaffected in their respective folding temperatures. The faster kinetics correlates with changes in the folding route for systems at the same temperature, where non-native contacts were shown to be relevant. The transition states of the two systems with and without crowders are similar. In the case of SH3, there are differences in the structuring of two strands, which may be associated with the increase in its folding rate, in addition to the destabilization of the denatured ensemble. The present study also detected a crossover in the thermodynamic stability behavior, previously observed experimentally and theoretically. As the temperature increases, crowders change from destabilizing to stabilizing agents.


Subject(s)
Protein Folding , Kinetics , Protein Stability , Solutions , Thermodynamics
3.
Comput Struct Biotechnol J ; 19: 2027-2044, 2021.
Article in English | MEDLINE | ID: mdl-33995900

ABSTRACT

During their life cycle, Leishmania parasites display a fine-tuned regulation of the mRNA translation through the differential expression of isoforms of eukaryotic translation initiation factor 4E (LeishIF4Es). The interaction between allosteric modulators such as 4E-interacting proteins (4E-IPs) and LeishIF4E affects the affinity of this initiation factor for the mRNA cap. Here, several computational approaches were employed to elucidate the molecular bases of the previously-reported allosteric modulation in L. major exerted by 4E-IP1 (Lm4E-IP1) on eukaryotic translation initiation factor 4E 1 (LmIF4E-1). Molecular dynamics (MD) simulations and accurate binding free energy calculations (ΔGbind ) were combined with network-based modeling of residue-residue correlations. We also describe the differences in internal motions of LmIF4E-1 apo form, cap-bound, and Lm4E-IP1-bound systems. Through community network calculations, the differences in the allosteric pathways of allosterically-inhibited and active forms of LmIF4E-1 were revealed. The ΔGbind values show significant differences between the active and inhibited systems, which are in agreement with the available experimental data. Our study thoroughly describes the dynamical perturbations of LmIF4E-1 cap-binding site triggered by Lm4E-IP1. These findings are not only essential for the understanding of a critical process of trypanosomatids' gene expression but also for gaining insight into the allostery of eukaryotic IF4Es, which could be useful for structure-based design of drugs against this protein family.

4.
J Phys Chem B ; 124(4): 650-661, 2020 01 30.
Article in English | MEDLINE | ID: mdl-31898906

ABSTRACT

Recent studies have associated the absence of bound metals (Apo protein) and mutations in Cu-Zn Human Superoxide Dismutase (SOD1) with amyotrophic lateral sclerosis (ALS) disease, suggesting mechanisms of SOD1 aggregation. Using a structure-based model and modifying the energy of interaction between amino acids in the metal-binding site, we detected differences between the folding of the apo and holo proteins. The presence of metal ions decreases the free-energy barrier and also suggests that the folding pathway may change to reach the native state. The kinetics of folding of the apo and holo forms also correlates with the amount of free-energy barrier in the folding process. Also, the stability of the native state is significantly affected by the absence of metal ions. Our results, obtained from a very simplified model, correlate with more detailed studies, which also have shown that the transition and the native states are affected by the absence of the metal ions, hindering the folding of SOD1 and decreasing the stability of the native state. Regarding the disulfide bond, the results show that its absence decreases the stability of the native structure but affects the transition state less, suggesting that it is possibly made late in the folding process.


Subject(s)
Superoxide Dismutase-1/chemistry , Humans , Kinetics , Models, Chemical , Mutation , Protein Folding , Superoxide Dismutase-1/genetics , Thermodynamics
5.
J Chem Phys ; 151(8): 085102, 2019 Aug 28.
Article in English | MEDLINE | ID: mdl-31470725

ABSTRACT

In recent years, there has been a growing interest to quantify the energy landscape that governs ribosome dynamics. However, in order to quantitatively integrate theoretical predictions and experimental measurements, it is essential that one has a detailed understanding of the associated diffusive properties. Here, all-atom explicit-solvent simulations (50 µs of aggregate sampling) predict that the diffusion coefficient of a tRNA molecule will depend on its position within the ribosome. Specifically, during aa-tRNA accommodation (i.e., the process by which tRNA enters the ribosome), the apparent diffusion coefficient decreases by approximately an order of magnitude. By comparing these to values obtained with an energetically "smooth" model, we show that the observed nonuniform behavior likely arises from electrostatic and solvation interactions between the tRNA and ribosome. These calculations also reveal the hierarchical character of ribosomal energetics, where steric interactions induce a large-scale free-energy barrier, and short-scale roughness determines the rate of diffusive movement across the landscape.


Subject(s)
Diffusion , RNA, Transfer/metabolism , Ribosomes/chemistry , Ribosomes/metabolism , Entropy , Molecular Dynamics Simulation , RNA, Transfer/chemistry
6.
J Cell Biochem ; 118(4): 726-738, 2017 04.
Article in English | MEDLINE | ID: mdl-27563734

ABSTRACT

Loxoscelism refers to the clinical symptoms that develop after brown spider bites. Brown spider venoms contain several phospholipase-D isoforms, which are the main toxins responsible for both the cutaneous and systemic effects of loxoscelism. Understanding of the phospholipase-D catalytic mechanism is crucial for the development of specific treatment that could reverse the toxic effects caused by the spider bite. Based on enzymatic, biological, structural, and thermodynamic tests, we show some features suitable for designing drugs against loxoscelism. Firstly, through molecular docking and molecular dynamics predictions, we found three different molecules (Suramin, Vu0155056, and Vu0359595) that were able to bind the enzyme's catalytic site and interact with catalytically important residues (His12 or His47) and with the Mg2+ co-factor. The binding promoted a decrease in the recombinant brown spider venom phospholipase-D (LiRecDT1) enzymatic activity. Furthermore, the presence of the inhibitors reduced the hemolytic, dermonecrotic, and inflammatory activities of the venom toxin in biological assays. Altogether, these results indicate the mode of action of three different LiRecDT1 inhibitors, which were able to prevent the venom toxic effects. This strengthen the idea of the importance of designing a specific drug to treat the serious clinical symptoms caused by the brown spider bite, a public health problem in several parts of the world, and until now without specific treatment. J. Cell. Biochem. 118: 726-738, 2017. © 2016 Wiley Periodicals, Inc.


Subject(s)
Arthropod Proteins/antagonists & inhibitors , Brown Recluse Spider/enzymology , Drug Design , Phospholipase D/antagonists & inhibitors , Spider Venoms/antagonists & inhibitors , Animals , Arthropod Proteins/chemistry , Arthropod Proteins/genetics , Benzimidazoles/pharmacology , Brown Recluse Spider/genetics , Brown Recluse Spider/pathogenicity , Drug Evaluation, Preclinical , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Hemolysis/drug effects , Humans , Kinetics , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Necrosis , Phospholipase D/chemistry , Phospholipase D/genetics , Phosphoric Diester Hydrolases/chemistry , Phosphoric Diester Hydrolases/genetics , Piperidines/pharmacology , Rabbits , Recombinant Proteins/genetics , Skin/drug effects , Skin/pathology , Spider Bites/drug therapy , Spider Bites/enzymology , Spider Venoms/chemistry , Spider Venoms/genetics , Suramin/pharmacology
7.
Biophys J ; 111(2): 287-293, 2016 Jul 26.
Article in English | MEDLINE | ID: mdl-27463131

ABSTRACT

Protein folding is a central problem in biological physics. Energetic roughness is an important aspect that controls protein-folding stability and kinetics. The roughness is associated with conflicting interactions in the protein and is also known as frustration. Recent studies indicate that an addition of a small amount of energetic frustration may enhance folding speed for certain proteins. In this study, we have investigated the conditions under which frustration increases the folding rate. We used a Cα structure-based model to simulate a group of proteins. We found that the free-energy barrier at the transition state (ΔF) correlates with nonnative-contact variation (ΔA), and the simulated proteins are clustered according to their fold motifs. These findings are corroborated by the Clementi-Plotkin analytical model. As a consequence, the optimum frustration regime for protein folding can be predicted analytically.


Subject(s)
Protein Folding , Proteins/chemistry , Kinetics , Thermodynamics
8.
Biochemistry ; 54(13): 2262-9, 2015 Apr 07.
Article in English | MEDLINE | ID: mdl-25777778

ABSTRACT

Protonectin (ILGTILGLLKGL-NH2), a peptide extracted from the venom of the wasp Agelaia pallipes pallipes, promotes mast cell degranulation activity, antibiosis against Gram-positive and -negative bacteria, and chemotaxis in polymorphonucleated leukocytes. Another peptide from the same venom, Protonectin (1-6), corresponding to the first six residues of Protonectin, exhibits only chemotaxis. A 1:1 mixture of these two peptides showed positive synergistic antimicrobial effects, attributed to the formation of a heterodimer.16 The antimicrobial activity is probably related to the peptides' interaction with membrane phospholipids. Equilibrium and replica exchange molecular dynamics simulations were used to investigate two systems: the interaction of Protonectins (two molecules) and that of a mixture Protonectin and Protonectin (1-6) in the environment of sodium dodecyl sulfate (SDS) micelles, which mimic bacterial membranes and are also highly anionic. We found that in both systems the peptides tend to aggregate in the aqueous environment and are held together by hydrophobic interactions and hydrogen bonds. In the equilibrium simulations, aggregated Protonectin/Protonectin (1-6) dissociates after penetrating the SDS micelle, whereas the two Protonectins remain associated throughout the simulation time. Also, in the replica exchange simulations, the Protonectins remain closer, associating through a greater number of hydrogen bonds, and were found at only one free energy minimum, whereas the peptides in the mixture display other probable distances from each other, which are significantly longer than those observed with two Protonectin molecules. Coulomb contributions and the free energy of the systems containing micelles were calculated and show that the interactions of the mixed peptides are favored, whereas the interactions between pure Protonectins are more probable. As a consequence of the preferential interaction with the micelle, the Protonectin molecule of the mixed system presents a higher helical structure content. The enhancement of the amphipathic features caused by Protonectin (1-6) can be related to the increase in the antimicrobial activity experimentally observed.


Subject(s)
Oligopeptides/chemistry , Wasp Venoms/chemistry , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/pharmacology , Micelles , Models, Molecular , Molecular Dynamics Simulation , Oligopeptides/metabolism , Oligopeptides/pharmacology , Sodium Dodecyl Sulfate/chemistry , Structure-Activity Relationship , Wasp Venoms/metabolism , Wasp Venoms/pharmacology
9.
Biophys J ; 107(12): 2881-2890, 2014 Dec 16.
Article in English | MEDLINE | ID: mdl-25517153

ABSTRACT

To reveal the molecular determinants of biological function, one seeks to characterize the interactions that are formed in conformational and chemical transition states. In other words, what interactions govern the molecule's energy landscape? To accomplish this, it is necessary to determine which degrees of freedom can unambiguously identify each transition state. Here, we perform simulations of large-scale aminoacyl-transfer RNA (aa-tRNA) rearrangements during accommodation on the ribosome and project the dynamics along experimentally accessible atomic distances. From this analysis, we obtain evidence for which coordinates capture the correct number of barrier-crossing events and accurately indicate when the aa-tRNA is on a transition path. Although a commonly used coordinate in single-molecule experiments performs poorly, this study implicates alternative coordinates along which rearrangements are accurately described as diffusive movements across a one-dimensional free-energy profile. From this, we provide the theoretical foundation required for single-molecule techniques to uncover the energy landscape governing aa-tRNA selection by the ribosome.


Subject(s)
Molecular Dynamics Simulation , RNA, Transfer/chemistry , Ribosomes/chemistry , Amino Acid Sequence , Base Sequence , Molecular Sequence Data , Nucleic Acid Conformation , Protein Conformation , RNA, Transfer/metabolism , Ribosomes/metabolism
10.
Proteins ; 81(10): 1727-37, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23609962

ABSTRACT

The energy landscape theory has been an invaluable theoretical framework in the understanding of biological processes such as protein folding, oligomerization, and functional transitions. According to the theory, the energy landscape of protein folding is funneled toward the native state, a conformational state that is consistent with the principle of minimal frustration. It has been accepted that real proteins are selected through natural evolution, satisfying the minimum frustration criterion. However, there is evidence that a low degree of frustration accelerates folding. We examined the interplay between topological and energetic protein frustration. We employed a Cα structure-based model for simulations with a controlled nonspecific energetic frustration added to the potential energy function. Thermodynamics and kinetics of a group of 19 proteins are completely characterized as a function of increasing level of energetic frustration. We observed two well-separated groups of proteins: one group where a little frustration enhances folding rates to an optimal value and another where any energetic frustration slows down folding. Protein energetic frustration regimes and their mechanisms are explained by the role of non-native contact interactions in different folding scenarios. These findings strongly correlate with the protein free-energy folding barrier and the absolute contact order parameters. These computational results are corroborated by principal component analysis and partial least square techniques. One simple theoretical model is proposed as a useful tool for experimentalists to predict the limits of improvements in real proteins.


Subject(s)
Molecular Dynamics Simulation , Protein Folding , Proteins , Least-Squares Analysis , Multivariate Analysis , Principal Component Analysis , Proteins/chemistry , Proteins/metabolism , Thermodynamics
11.
Proc Natl Acad Sci U S A ; 109(39): 15763-8, 2012 Sep 25.
Article in English | MEDLINE | ID: mdl-23019359

ABSTRACT

The energy landscape approach has played a fundamental role in advancing our understanding of protein folding. Here, we quantify protein folding energy landscapes by exploring the underlying density of states. We identify three quantities essential for characterizing landscape topography: the stabilizing energy gap between the native and nonnative ensembles δE, the energetic roughness ΔE, and the scale of landscape measured by the entropy S. We show that the dimensionless ratio between the gap, roughness, and entropy of the system Λ=δE/(ΔE√(2S)) accurately predicts the thermodynamics, as well as the kinetics of folding. Large Λ implies that the energy gap (or landscape slope towards the native state) is dominant, leading to more funneled landscapes. We investigate the role of topological and energetic roughness for proteins of different sizes and for proteins of the same size, but with different structural topologies. The landscape topography ratio Λ is shown to be monotonically correlated with the thermodynamic stability against trapping, as characterized by the ratio of folding temperature versus trapping temperature. Furthermore, Λ also monotonically correlates with the folding kinetic rates. These results provide the quantitative bridge between the landscape topography and experimental folding measurements.


Subject(s)
Models, Chemical , Protein Folding , Proteins/chemistry , Entropy
12.
Biophys J ; 99(2): 600-8, 2010 Jul 21.
Article in English | MEDLINE | ID: mdl-20643080

ABSTRACT

We present a method for calculating the configurational-dependent diffusion coefficient of a globular protein as a function of the global folding process. Using a coarse-grained structure-based model, we determined the diffusion coefficient, in reaction coordinate space, as a function of the fraction of native contacts formed Q for the cold shock protein (TmCSP). We find nonmonotonic behavior for the diffusion coefficient, with high values for the folded and unfolded ensembles and a lower range of values in the transition state ensemble. We also characterized the folding landscape associated with an energetically frustrated variant of the model. We find that a low-level of frustration can actually stabilize the native ensemble and increase the associated diffusion coefficient. These findings can be understood from a mechanistic standpoint, in that the transition state ensemble has a more homogeneous structural content when frustration is present. Additionally, these findings are consistent with earlier calculations based on lattice models of protein folding and more recent single-molecule fluorescence measurements.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Protein Folding , Thermotoga maritima/metabolism , Amino Acids , Computer Simulation , Diffusion , Entropy , Models, Molecular , Temperature
13.
Methods ; 52(1): 91-8, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20438841

ABSTRACT

We developed both analytical and simulation methods to explore the diffusion dynamics in protein folding. We found the diffusion as a quantitative measure of escape from local traps along the protein folding funnel with chosen reaction coordinates has two remarkable effects on kinetics. At a fixed coordinate, local escape time depends on the distribution of barriers around it, therefore the diffusion is often time distributed. On the other hand, the environments (local escape barriers) change along the coordinates, therefore diffusion is coordinate dependent. The effects of time-dependent diffusion on folding can lead to non-exponential kinetics and non-Poisson statistics of folding time distribution. The effects of coordinate dependent diffusion on folding can lead to the change of the kinetic barrier height as well as the position of the corresponding transition state and therefore modify the folding kinetic rates as well as the kinetic routes. Our analytical models for folding are based on a generalized Fokker-Planck diffusion equation with diffusion coefficient both dependent on coordinate and time. Our simulation for folding are based on structure-based folding models with a specific fast folding protein CspTm studied experimentally on diffusion and folding with single molecules. The coordinate and time-dependent diffusion are especially important to be considered in fast folding and single molecule studies, when there is a small or no free energy barrier and kinetics is controlled by diffusion while underlying statistics of kinetics become important. Including the coordinate dependence of diffusion will challenge the transition state theory of protein folding. The classical transition state theory will have to be modified to be consistent. The more detailed folding mechanistic studies involving phi value analysis based on the classical transition state theory will also have to be quantitatively modified. Complex kinetics with multiple time scales may allow us not only to explore the folding kinetics but also probe the local landscape and barrier height distribution with single-molecule experiments.


Subject(s)
Protein Folding , Cold Shock Proteins and Peptides/chemistry , Computer Simulation , Diffusion , Kinetics , Thermodynamics , Thermotoga maritima/chemistry
14.
Proc Natl Acad Sci U S A ; 104(37): 14646-51, 2007 Sep 11.
Article in English | MEDLINE | ID: mdl-17804812

ABSTRACT

We show that diffusion can play an important role in protein-folding kinetics. We explicitly calculate the diffusion coefficient of protein folding in a lattice model. We found that diffusion typically is configuration- or reaction coordinate-dependent. The diffusion coefficient is found to be decreasing with respect to the progression of folding toward the native state, which is caused by the collapse to a compact state constraining the configurational space for exploration. The configuration- or position-dependent diffusion coefficient has a significant contribution to the kinetics in addition to the thermodynamic free-energy barrier. It effectively changes (increases in this case) the kinetic barrier height as well as the position of the corresponding transition state and therefore modifies the folding kinetic rates as well as the kinetic routes. The resulting folding time, by considering both kinetic diffusion and the thermodynamic folding free-energy profile, thus is slower than the estimation from the thermodynamic free-energy barrier with constant diffusion but is consistent with the results from kinetic simulations. The configuration- or coordinate-dependent diffusion is especially important with respect to fast folding, when there is a small or no free-energy barrier and kinetics is controlled by diffusion. Including the configurational dependence will challenge the transition state theory of protein folding. The classical transition state theory will have to be modified to be consistent. The more detailed folding mechanistic studies involving phi value analysis based on the classical transition state theory also will have to be modified quantitatively.


Subject(s)
Protein Folding , Algorithms , Computer Simulation , Diffusion , Kinetics , Models, Chemical , Monte Carlo Method , Protein Conformation , Thermodynamics
15.
J Chem Phys ; 125(8): 084904, 2006 Aug 28.
Article in English | MEDLINE | ID: mdl-16965054

ABSTRACT

A lattice model is used to study mutations and compacting effects on protein folding rates and folding temperature. In the context of protein evolution, we address the question regarding the best scenario for a polypeptide chain to fold: either a fast nonspecific collapse followed by a slow rearrangement to form the native structure or a specific collapse from the unfolded state with the simultaneous formation of the native state. This question is investigated for optimized sequences, whose native state has no frustrated contacts between monomers, and also for mutated sequences, whose native state has some degree of frustration. It is found that the best scenario for folding may depend on the amount of frustration of the native structure. The implication of this result on protein evolution is discussed.


Subject(s)
Biophysics/methods , Chemistry, Physical/methods , Protein Folding , Proteins/chemistry , Algorithms , Evolution, Molecular , Hydrophobic and Hydrophilic Interactions , Kinetics , Models, Statistical , Models, Theoretical , Mutation , Peptides/chemistry , Protein Conformation , Temperature , Thermodynamics
16.
Biophys J ; 89(4): 2693-700, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16055542

ABSTRACT

A minimalist representation of protein structures using a Go-like potential for interactions is implemented to investigate the mechanisms of the domain swapping of p13suc1, a protein that exists in two native conformations: a monomer and a domain-swapped dimer formed by the exchange of a beta-strand. Inspired by experimental studies which showed a similarity of the transition states for folding of the monomer and the dimer, in this study we justify this similarity in molecular descriptions. When intermediates are populated in the simulations, formation of a domain-swapped dimer initiates from the ensemble of unfolded monomers, given by the fact that the dimer formation occurs at the folding/unfolding temperature of the monomer (T(f)). It is also shown that transitions, leading to a dimer, involve the presence of two intermediates, one of them has a dimeric form and the other is monomeric; the latter is much more populated than the former. However, at temperatures lower than T(f), the population of intermediates decreases. It is argued that the two folded forms may coexist in absence of intermediates at a temperature much lower than T(f). Computational simulations enable us to find a mechanism, "lock-and-dock", for domain swapping of p13suc1. To explore the route toward dimer formation, the folding of unstructured monomers must be retarded by first locking one of the free ends of each chain. Then, the other free termini could follow and dock at particular regions, where most intrachain contacts are formed, and thus define the transition states of the dimer. The simulations also showed that a decrease in the maximum distance between monomers increased their stability, which is explained based on confinement arguments. Although the simulations are based on models extracted from the native structure of the monomer and the dimer of p13suc1, the mechanism of the domain-swapping process could be general, not only for p13suc1.


Subject(s)
Cell Cycle Proteins/chemistry , Cell Cycle Proteins/ultrastructure , Models, Chemical , Models, Molecular , Schizosaccharomyces pombe Proteins/chemistry , Schizosaccharomyces pombe Proteins/ultrastructure , Binding Sites , Cell Cycle Proteins/analysis , Computer Simulation , Dimerization , Macromolecular Substances/analysis , Macromolecular Substances/chemistry , Protein Binding , Protein Conformation , Protein Folding , Protein Structure, Tertiary , Schizosaccharomyces pombe Proteins/analysis
17.
Phys Rev Lett ; 88(16): 168101, 2002 Apr 22.
Article in English | MEDLINE | ID: mdl-11955268

ABSTRACT

Experiments with fast folding proteins are beginning to address the relationship between collapse and folding. We investigate how different scenarios for folding can arise depending on whether the folding and collapse transitions are concurrent or whether a nonspecific collapse precedes folding. Many earlier studies have focused on the limit in which collapse is fast compared to the folding time; in this work we focus on the opposite limit where, at the folding temperature, collapse and folding occur simultaneously. Real proteins exist in both of these limits. The folding mechanism varies substantially in these two regimes. In the regime of concurrent folding and collapse, nonspecific collapse now occurs at a temperature below the folding temperature (but slightly above the glass transition temperature).


Subject(s)
Protein Folding , Proteins/chemistry , Amino Acid Sequence , Monte Carlo Method , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...