Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Water Sci Technol ; 76(11-12): 2988-2999, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29210686

ABSTRACT

The influences of climate on the retention capability of green roof have been widely discussed in existing literature. However, knowledge on how the retention capability of green roof is affected by the tropical climate is limited. This paper highlights the retention performance of the green roof situated in Kuching under hot-humid tropical climatic conditions. Using the green roof water balance modelling approach, this study simulated the hourly runoff generated from a virtual green roof from November 2012 to October 2013 based on past meteorological data. The result showed that the overall retention performance was satisfactory with a mean retention rate of 72.5% from 380 analysed rainfall events but reduced to 12.0% only for the events that potentially trigger the occurrence of flash flood. By performing the Spearman rank's correlation analysis, it was found that the rainfall depth and mean rainfall intensity, individually, had a strong negative correlation with event retention rate, suggesting that the retention rate increases with decreased rainfall depth. The expected direct relationship between retention rate and antecedent dry weather period was found to be event size dependent.


Subject(s)
Models, Theoretical , Rain , Tropical Climate , Water Movements , China , Climate Change , Conservation of Natural Resources , Construction Materials , Facility Design and Construction , Floods , Housing
2.
J Hazard Mater ; 124(1-3): 68-73, 2005 Sep 30.
Article in English | MEDLINE | ID: mdl-15979238

ABSTRACT

A pentachlorophenol (PCP) degrading bacterium was isolated from PCP-contaminated soils and identified as Pseudomonas mendocina NSYSU (P. mendocina NSYSU). The main objectives of this study were to (1) clarify the factors affecting the ability and efficiency of PCP biodegradation by P. mendocina NSYSU, and (2) optimize the use of this bacterium in bioremediation of PCP. Microcosm experiments were conducted to fulfill the objectives. In batch cultures, P. mendocina NSYSU used PCP as its sole source of carbon and energy and was capable of completely degrading this compound. This was confirmed by the stoichiometric release of chloride ion. Moreover, P. mendocina NSYSU was able to mineralize a high concentration of PCP (150 mg/L). Results from the oxygen concentration experiment reveal that the growth of P. mendocina NSYSU was inhibited under low oxygen and anaerobic conditions. Results indicate that the optimal growth conditions for P. mendocina NSYSU include the following: slightly acidic (6

Subject(s)
Phencyclidine/metabolism , Pseudomonas mendocina/metabolism , Biodegradation, Environmental , Carbon/metabolism , Chlorides/metabolism , Environment , Oxygen/metabolism , Pseudomonas mendocina/growth & development
3.
Water Res ; 38(3): 663-72, 2004 Feb.
Article in English | MEDLINE | ID: mdl-14723935

ABSTRACT

Pentachlorophenol (PCP) has been used in the past as a pesticide, herbicide, antifungal agent, bactericide, and wood preservative. Thus, PCP is among the most ubiquitous chlorinated compounds found in groundwater contamination. A former pesticide manufacturing plant located in southern Taiwan has been identified as a PCP spill site. In this study, groundwater samples collected from the PCP site were analyzed to assess the occurrence of natural PCP biodegradation. Microcosm experiments were conducted to (1) evaluate the feasibility of biodegrading PCP by indigenous microbial consortia under aerobic and cometabolic conditions, and (2) determine the potential of enhancing PCP biodegradation using cane molasses and biological sludge cake as the substitute primary substrates under cometabolic conditions. The inocula used in this microcosm study were aquifer sediments collected from the PCP site and activated sludges collected from the municipal and industrial wastewater treatment plants. Results from this field investigation indicate that the natural biodegradation of PCP is occurring and causing the decrease in PCP concentration. Microcosm results show that the indigenous microorganisms can biodegrade PCP under both aerobic and aerobic cometabolism conditions. A PCP-degrading bacterium was isolated from the collected aquifer sediments and identified as Pseudomonas mendocina NSYSU via some biochemical tests and further conformation of DNA sequencing. In batch cultures, P. mendocina NSYSU used PCP as its sole source of carbon and energy. The isolated bacterium, P. mendocina NSYSU, was capable of completely degrading PCP as indicated by the increase in biomass formation with the decrease in PCP concentrations occurred in the carbon-free medium simultaneously. Results indicate that the in situ or on-site aerobic bioremediation using indigenous microorganisms or inoculated bacteria would be a feasible technology to clean up the studied PCP-contaminated site. Results from this study will be useful in designing a scale-up in situ or on-site PCP bioremediation system (e.g., on-site bioreactor) for field application.


Subject(s)
Chemical Industry , Pentachlorophenol/metabolism , Pesticides/metabolism , Pseudomonas mendocina/physiology , Soil Pollutants/metabolism , Water Pollutants, Chemical/metabolism , Accidents , Biodegradation, Environmental , Hazardous Waste , Water Supply
SELECTION OF CITATIONS
SEARCH DETAIL
...