Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Cancer Metab ; 1(1): 19, 2013 Sep 06.
Article in English | MEDLINE | ID: mdl-24280423

ABSTRACT

BACKGROUND: Most normal cells in the presence of oxygen utilize glucose for mitochondrial oxidative phosphorylation. In contrast, many cancer cells rapidly convert glucose to lactate in the cytosol, a process termed aerobic glycolysis. This glycolytic phenotype is enabled by lactate dehydrogenase (LDH), which catalyzes the inter-conversion of pyruvate and lactate. The purpose of this study was to identify and characterize potent and selective inhibitors of LDHA. METHODS: High throughput screening and lead optimization were used to generate inhibitors of LDHA enzymatic activity. Effects of these inhibitors on metabolism were evaluated using cell-based lactate production, oxygen consumption, and 13C NMR spectroscopy assays. Changes in comprehensive metabolic profile, cell proliferation, and apoptosis were assessed upon compound treatment. RESULTS: 3-((3-carbamoyl-7-(3,5-dimethylisoxazol-4-yl)-6-methoxyquinolin-4-yl) amino) benzoic acid was identified as an NADH-competitive LDHA inhibitor. Lead optimization yielded molecules with LDHA inhibitory potencies as low as 2 nM and 10 to 80-fold selectivity over LDHB. Molecules in this family rapidly and profoundly inhibited lactate production rates in multiple cancer cell lines including hepatocellular and breast carcinomas. Consistent with selective inhibition of LDHA, the most sensitive breast cancer cell lines to lactate inhibition in hypoxic conditions were cells with low expression of LDHB. Our inhibitors increased rates of oxygen consumption in hepatocellular carcinoma cells at doses up to 3 microM, while higher concentrations directly inhibited mitochondrial function. Analysis of more than 500 metabolites upon LDHA inhibition in Snu398 cells revealed that intracellular concentrations of glycolysis and citric acid cycle intermediates were increased, consistent with enhanced Krebs cycle activity and blockage of cytosolic glycolysis. Treatment with these compounds also potentiated PKM2 activity and promoted apoptosis in Snu398 cells. CONCLUSIONS: Rapid chemical inhibition of LDHA by these quinoline 3-sulfonamids led to profound metabolic alterations and impaired cell survival in carcinoma cells making it a compelling strategy for treating solid tumors that rely on aerobic glycolysis for survival.

2.
ACS Med Chem Lett ; 1(1): 30-4, 2010 Apr 08.
Article in English | MEDLINE | ID: mdl-24900171

ABSTRACT

Inhibition of mitotic kinesins represents a novel approach for the discovery of a new generation of anti-mitotic cancer chemotherapeutics. We report here the discovery of the first potent and selective inhibitor of centromere-associated protein E (CENP-E) 3-chloro-N-{(1S)-2-[(N,N-dimethylglycyl)amino]-1-[(4-{8-[(1S)-1-hydroxyethyl]imidazo[1,2-a]pyridin-2-yl}phenyl)methyl]ethyl}-4-[(1-methylethyl)oxy]benzamide (GSK923295; 1), starting from a high-throughput screening hit, 3-chloro-4-isopropoxybenzoic acid 2. Compound 1 has demonstrated broad antitumor activity in vivo and is currently in human clinical trials.

4.
Bioorg Med Chem Lett ; 19(15): 4350-3, 2009 Aug 01.
Article in English | MEDLINE | ID: mdl-19515564

ABSTRACT

The synthesis and optimisation of HCV NS5B polymerase inhibitors with improved potency versus the existing compound 1 is described. Substitution in the benzothiadiazine portion of the molecule, furnishing improvement in potency in the high protein Replicon assay, is highlighted, culminating in the discovery of 12h, a highly potent oxyacetamide derivative.


Subject(s)
Antiviral Agents/chemical synthesis , Benzothiadiazines/chemistry , Chemistry, Pharmaceutical/methods , Hepacivirus/enzymology , Viral Nonstructural Proteins/antagonists & inhibitors , Administration, Oral , Animals , Antiviral Agents/pharmacology , Benzothiadiazines/pharmacology , Drug Design , Humans , Inhibitory Concentration 50 , Models, Chemical , Molecular Conformation , Molecular Structure , Rats , Structure-Activity Relationship
5.
J Med Chem ; 49(3): 971-83, 2006 Feb 09.
Article in English | MEDLINE | ID: mdl-16451063

ABSTRACT

Recently, we disclosed a new class of HCV polymerase inhibitors discovered through high-throughput screening (HTS) of the GlaxoSmithKline proprietary compound collection. This interesting class of 3-(1,1-dioxo-2H-1,2,4-benzothiadiazin-3-yl)-4-hydroxy-2(1H)-quinolinones potently inhibits HCV polymerase enzymatic activity and inhibits the ability of the subgenomic HCV replicon to replicate in Huh-7 cells. This report will focus on the structure-activity relationships (SAR) of substituents on the quinolinone ring, culminating in the discovery of 1-(2-cyclopropylethyl)-3-(1,1-dioxo-2H-1,2,4-benzothiadiazin-3-yl)-6-fluoro-4-hydroxy-2(1H)-quinolinone (130), an inhibitor with excellent potency in biochemical and cellular assays possessing attractive molecular properties for advancement as a clinical candidate. The potential for development and safety assessment profile of compound 130 will also be discussed.


Subject(s)
Antiviral Agents/chemical synthesis , Benzothiadiazines/chemical synthesis , Hepacivirus/enzymology , Quinolones/chemical synthesis , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Thiadiazines/chemical synthesis , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Benzothiadiazines/chemistry , Benzothiadiazines/pharmacology , Biological Availability , Blood Proteins/metabolism , Cell Line , Crystallography, X-Ray , Dogs , Genotype , Half-Life , Hepacivirus/genetics , Macaca fascicularis , Models, Molecular , Molecular Structure , Mutation , Protein Binding , Quinolones/chemistry , Quinolones/pharmacology , RNA-Dependent RNA Polymerase/chemistry , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , Thiadiazines/chemistry , Thiadiazines/pharmacology
6.
Bioorg Med Chem Lett ; 16(8): 2205-8, 2006 Apr 15.
Article in English | MEDLINE | ID: mdl-16455253

ABSTRACT

An efficient, asymmetric solid-phase synthesis of benzothiadiazine-substituted tetramic acids is reported. Starting from commercially available chiral Fmoc-protected alpha-amino acids loaded onto Wang resin, Fmoc removal, reductive amination followed by amide bond formation, and base-catalyzed cyclization with simultaneous cleavage from the resin provided the desired products. Compounds described are potent inhibitors of the hepatitis C virus RNA-dependent RNA polymerase.


Subject(s)
Antiviral Agents/pharmacology , Benzothiadiazines/chemical synthesis , Hepacivirus/drug effects , Pyrrolidinones/chemical synthesis , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Animals , Antiviral Agents/therapeutic use , Benzothiadiazines/pharmacology , Catalysis , Cyclization , Drug Resistance, Viral , Hepacivirus/enzymology , Hepatitis C/drug therapy , Humans , Inhibitory Concentration 50 , Pyrrolidinones/pharmacology
7.
Org Lett ; 7(24): 5521-4, 2005 Nov 24.
Article in English | MEDLINE | ID: mdl-16288546

ABSTRACT

[reaction: see text] An efficient two-pot, asymmetric synthesis of benzothiadiazine-substituted tetramic acids is reported. Starting from commercially available alpha-amino acids or esters, reductive amination followed by a novel one-pot amide bond formation/Dieckmann cyclization provided the desired products in high yield and optical purity. An analogous solid-phase approach to the same targets is also presented. These compounds were found to be potent inhibitors of hepatitis C virus RNA-dependent RNA polymerase.


Subject(s)
Antiviral Agents/chemical synthesis , Antiviral Agents/pharmacology , Benzothiadiazines/chemical synthesis , Benzothiadiazines/pharmacology , Hepacivirus/drug effects , Pyrrolidinones/chemical synthesis , Pyrrolidinones/pharmacology , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Antiviral Agents/chemistry , Benzothiadiazines/chemistry , Combinatorial Chemistry Techniques , Cyclization , Hepacivirus/enzymology , Molecular Structure , Pyrrolidinones/chemistry
8.
Steroids ; 67(13-14): 1041-4, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12441189

ABSTRACT

We describe the synthesis of (25R)-cholest-5-en-3beta,26-diol ((25R)-26-hydroxycholesterol) from diosgenin in four steps in 58% overall, yield via a modified Clemmensen reduction followed by a Barton deoxygenation reaction.


Subject(s)
Hydroxycholesterols/chemical synthesis , Hydroxycholesterols/chemistry , Molecular Structure
9.
Lipids ; 37(12): 1193-5, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12617474

ABSTRACT

Sharks are the most dangerous predators of people in the sea, resulting in people being mauled and killed each year. A shark repellent could help to diminish this danger. The aglycone of the shark repellent pavoninin-5, (25R)-cholest-5-en-3beta,15alpha,26-triol (5a), was synthesized from diosgenin (9). Removing mercury from the Clemmensen reduction of 9 gave a higher yield of (25R)-cholest-5-en-3beta,16beta,26-triol, 10a, and was also more environmentally friendly. Attempted methods for the transposition of the C-16beta hydroxyl to the 15alpha position are described. A successful method for this transposition via the 15alpha-hydroxy-16-ketone, 8a, using the Barton deoxygenation reaction on the 16-alcohol 14b, is reported.


Subject(s)
Acetylglucosamine/chemical synthesis , Cholesterol/chemical synthesis , Sharks , Acetylglucosamine/analogs & derivatives , Acetylglucosamine/chemistry , Animals , Cholesterol/analogs & derivatives , Cholesterol/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...