Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 10(11)2020 Nov 06.
Article in English | MEDLINE | ID: mdl-33172207

ABSTRACT

There are so many variables affecting the large-scale chemical synthesis of nanoparticles that mass production remains a challenge. Here, using a high-efficiency compact electron beam generator irradiating a low-energy electron beam, we fabricate carbon-supported Pt nanoparticles (Pt/C) in an open chamber to present the applicability of an electron beam to the mass production of metal nanocatalysts for polymer electrolyte membrane fuel cells (PEMFCs). The amount of dispersants (glycerol) and radical scavengers (isopropyl alcohol, IPA), the most important factors in the electron beam-induced fabrication process, is systematically controlled to find the conditions for the synthesis of the particle structure suitable for PEMFC applications. Furthermore, the effects of the structural changes on the electrochemical properties of the catalysts are thoroughly investigated. Through in-depth studies, it is clearly revealed that while dispersants control the nucleation step of monomers affecting the degree of dispersion of nanoparticles, radical scavengers with strong oxidizing power have an effect on the particle growth rate. Therefore, this study is expected to present the applicability of low-energy electron beam to the mass production of metal nanocatalysts for PEMFCs, and to provide insights into the fabrication of nanoparticles using low-energy electron beams.

2.
J Nanosci Nanotechnol ; 15(11): 8508-14, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26726543

ABSTRACT

As the development of manufacturing technology for electronic devices, propresses it is necessary to study manufacturing technologies for mass storage, low-volume, improved reliability, and low cost materials for electronic devices used in data communication. The noble metals are the most commonly used raw materials used in such manufacturing. However, the raw materials (Ag, Pt, etc.) are expensive and raise the manufacturing cost. So, there is a need to replace these materials with raw materials of low cost. Recently, the much-cheaper Cu has received attention in that it has the same properties as the noble metals. Cu has good physical and chemical properties. However, its anti-oxidation is weak. Therefore, to make up for this weak point, research has generally been conducted to find a method to coat copper with a noble metal. The coating, comprised of the noble metal, is strong against the oxidation of the Cu surface. In this study, we made Cu@Ag core-shell nanoparticles; these particles have the same level of electro-conductivity as Ag. These materials are expected to reduce the product cost of raw materials.

3.
J Am Chem Soc ; 124(32): 9382-3, 2002 Aug 14.
Article in English | MEDLINE | ID: mdl-12167027

ABSTRACT

Ordered uniform porous carbon frameworks showing interesting morphology variations were synthesized against removable colloidal silica crystalline templates through simply altering acid catalyst sites for acid-catalyzed polymerization. These highly ordered uniform porous carbons as a catalyst supporter resulted in much improved catalytic activity for methanol oxidation in a fuel cell.

SELECTION OF CITATIONS
SEARCH DETAIL
...