Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Macromol Rapid Commun ; : e2400234, 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38824415

ABSTRACT

Invisible aligners have been widely used in orthodontic treatment but still present issues with plaque formation and oral mucosa abrasion, which can lead to complicated oral diseases. To address these issues, hydrophilic poly(sulfobetaine methacrylate) (polySBMA) coatings with lubricating, antifouling, and antiadhesive properties have been developed on the aligner materials (i.e., polyethylene terephthalate glycol, PETG) via a simple and feasible glycidyl methacrylate (GMA)-assisted coating strategy. Poly(GMA-co-SBMA) is grafted onto the aminated PETG surface via the ring-opening reaction of GMA (i.e., "grafting to" approach to obtain G-co-S coating), or a polySBMA layer is formed on the GMA-grafted PETG surface via free radical polymerization (i.e., "grafting from" approach to obtain G-g-S coating). The G-co-S and G-g-S coatings significantly reduce the friction coefficient of PETG surface. Protein adsorption, bacterial adhesion, and biofilm formation on the G-co-S- and G-g-S-coated surfaces are significantly inhibited. The performance of the coatings remains stable after storage in air or artificial saliva for 2 weeks. Both coatings demonstrate good biocompatibility in vitro and is not caused irritation to the oral mucosa of rats in vivo over 2 weeks. This study proposes a promising strategy for the development of invisible aligners with improved performance, which is beneficial for oral health treatment.

2.
Carbohydr Polym ; 330: 121821, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38368102

ABSTRACT

Restoration of the lubrication functions of articular cartilage is an effective treatment to alleviate the progression of osteoarthritis (OA). Herein, we fabricated chitosan-block-poly(sulfobetaine methacrylate) (CS-b-pSBMA) copolymer via a free radical polymerization of sulfobetaine methacrylate onto activated chitosan segment, structurally mimicking the lubricating biomolecules on cartilage. The successful copolymerization of CS-b-pSBMA was verified by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and 1H nuclear magnetic resonance. Friction test confirmed that the CS-b-pSBMA copolymer could achieve an excellent lubrication effect on artificial joint materials such as Ti6Al4V alloy with a coefficient of friction as low as 0.008, and on OA-simulated cartilage, better than the conventional lubricant hyaluronic acid, and the adsorption effect of lubricant on cartilage surface was proved by a fluorescence labeling experiment. In addition, CS-b-pSBMA lubricant possessed an outstanding stability, which can withstand enzymatic degradation and even a long-term storage up to 4 weeks. In vitro studies showed that CS-b-pSBMA lubricant had a favorable antibacterial activity and good biocompatibility. In vivo studies confirmed that the CS-b-pSBMA lubricant was stable and could alleviate the degradation process of cartilage in OA mice. This biomimetic lubricant is a promising articular joint lubricant for the treatment of OA and cartilage restoration.


Subject(s)
Cartilage, Articular , Chitosan , Osteoarthritis , Animals , Mice , Chitosan/pharmacology , Lubricants , Biomimetics , Lubrication , Polymers/pharmacology
3.
Macromol Rapid Commun ; 45(8): e2300643, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38225681

ABSTRACT

Smart hydrogels responsive to external stimuli are promising for various applications such as soft robotics and smart devices. High mechanical strength and fast response rate are particularly important for the construction of hydrogel actuators. Herein, tough hydrogels with rapid response rates are synthesized using vinyl-functionalized poly(N-isopropylacrylamide) (PNIPAM) microgels as macro-crosslinkers and N-isopropylacrylamide as monomers. The compression strength of the obtained PNIPAM hydrogels is up to 7.13 MPa. The response rate of the microgel-crosslinked hydrogels is significantly enhanced compared with conventional chemically crosslinked PNIPAM hydrogels. The mechanical strength and response rate of hydrogels can be adjusted by varying the proportion of monomers and crosslinkers. The lower critical solution temperature (LCST) of the PNIPAM hydrogels could be tuned by copolymerizing with ionic monomer sodium methacrylate. Thermo-responsive bilayer hydrogels are fabricated using PINPAM hydrogels with different LCSTs via a layer-by-layer method. The thermo-responsive fast swelling and shrinking properties of the two layers endow the bilayer hydrogel with anisotropic structures and asymmetric response characteristics, allowing the hydrogel to respond rapidly. The bilayer hydrogels are fabricated into clamps to grab small objects and flowers that mimicked the closure of petals, and it shows great application prospects in the field of actuators.


Subject(s)
Acrylic Resins , Hydrogels , Temperature , Hydrogels/chemistry , Hydrogels/chemical synthesis , Acrylic Resins/chemistry , Microgels/chemistry , Cross-Linking Reagents/chemistry , Acrylamides/chemistry
4.
Adv Mater ; 34(26): e2200908, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35483076

ABSTRACT

Deep-learning (DL) methods, in consideration of their excellence in dealing with highly complex structure-performance relationships for materials, are expected to become a new design paradigm for breakthroughs in material performance. However, in most cases, it is impractical to collect massive-scale experimental data or open-source theoretical databases to support training DL models with sufficient prediction accuracy. In a dataset consisting of 483 porous silicone rubber observations generated via ink-writing additive manufacturing, this work demonstrates that constructing low-dimensional, accurate descriptors is the prerequisite for obtaining high-precision DL models based on small experimental datasets. On this basis, a unique convolutional bidirectional long short-term memory model with spatiotemporal features extraction capability is designed, whose hierarchical learning mechanism further reduces the requirement for the amount of data by taking full advantage of data information. The proposed approach can be expected as a powerful tool for innovative material design on small experimental datasets, which can also be used to explore the evolutionary mechanisms of the structures and properties of materials under complex working conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...