Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
3.
Mol Med Rep ; 19(6): 4890-4896, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31059012

ABSTRACT

The aim of this study was to investigate the protective effect of sulforaphane (SFN) on 1­methyl­4­phenyl pyridine ion (MPP+)­induced cytotoxicity and to investigate its possible mechanisms. METHODS: PC12 cell toxicity induced by MPP+ served as a cell model of Parkinson's diseases. The cell culture + experiments were divided into four groups based on the different treatments, namely, vehicle control, SFN, MPP+ and SFN pretreatment plus MPP+. Cell viability and apoptosis were examined by MTT assay and flow cytometry, respectively. Expressions of nuclear factor erythroid 2­related factor 2 (Nrf2), heme oxygenase 1 (HO­1) and nicotinamide quinone oxidoreductase 1 (NQO1) were detected using western blotting. RESULTS: MPP+ reduced the survival rate of PC12 cells in a dose­ and time­dependent manner. After 24­h treatment with 500 µmol/l MPP+, the survival rate of PC12 cells decreased to 58.2±0.03% of that in the control groups. Under the same conditions MPP+ resulted in significant apoptosis of PC12 cells (apoptosis rate: 30.4±0.6%). However, SFN pretreatment significantly attenuated the cell damage induced by MPP+. Furthermore, it was demonstrated that SFN reversed the reduction of Nrf2, HO­1 and NQO1 expression induced by MPP+. CONCLUSION: SFN may protect PC12 cells from MPP+­induced damage via activating the Nrf2­ARE (antioxidant responsive element) pathway.


Subject(s)
Isothiocyanates/pharmacology , NF-E2-Related Factor 2/metabolism , Oxidative Stress/drug effects , PC12 Cells/drug effects , Protective Agents/pharmacology , 1-Methyl-4-phenylpyridinium/toxicity , Animals , Antioxidant Response Elements , Antioxidants/pharmacology , Antiparkinson Agents/pharmacology , Apoptosis/drug effects , Cell Survival/drug effects , Heme Oxygenase-1/metabolism , Isothiocyanates/administration & dosage , NAD(P)H Dehydrogenase (Quinone)/metabolism , Parkinson Disease/drug therapy , Rats , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Sulfoxides , Survival Rate , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...