Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Huan Jing Ke Xue ; 45(7): 4074-4081, 2024 Jul 08.
Article in Chinese | MEDLINE | ID: mdl-39022955

ABSTRACT

The application of ANAMMOX technology is constrained by sluggish growth and difficulty in enriching ANAMMOX bacteria. Long-term starvation of functioning bacteria due to limited substrate supply makes the steady operation of ANAMMOX reactors more difficult. Re-examining the start-up and recovery performance of the ANAMMOX reactor and identifying its resistance mechanism are important from the standpoint of long-term starvation. By inoculating nitrifying and denitrifying sludge under various operating circumstances, the ANAMMOX reactors were successfully started. Under various start-up procedures, the tolerance mechanism and recovery performance were examined. The outcomes demonstrated that the denitrifying sludge-inoculated reactor operated steadily with a high substrate concentration and low flow rate. After 85 days of operation, the removal efficiencies of NH4+-N, NO2--N, and total nitrogen reached 98.7%, 99.3%, and 89.3%, respectively. After 144 days of starvation and 30 days of recovery, the better nitrogen removal performance was achieved at a low substrate concentration and high flow rate, and the removal efficiencies were 99.8% (NH4+-N), 99.8% (NO2--N), and 93.6% (total nitrogen). During the starvation, extracellular polymeric substances wrapped the ANAMMOX bacteria and kept them intact to resist long-term starvation stress. The expression of nirS, hzsA, and hdh genes ensured the synthesis of nitrite/nitric oxide oxidoreductase, hydrazine synthase, and hydrazine dehydrogenase to maintain ANAMMOX activity. There was no significant difference in the relative abundance of ANAMMOX bacteria before and after starvation recovery. Candidatus Kuenenia had better anti-hunger ability, and the relative abundance increased by more than 86% after 30 days of recovery, confirming its tolerance to long-term starvation.


Subject(s)
Bioreactors , Nitrogen , Waste Disposal, Fluid , Bioreactors/microbiology , Waste Disposal, Fluid/methods , Nitrogen/metabolism , Nitrogen/isolation & purification , Ammonium Compounds/metabolism , Oxidation-Reduction , Sewage/microbiology , Anaerobiosis , Bacteria/metabolism , Denitrification , Bacteria, Anaerobic/metabolism , Ammonia/metabolism
2.
J Environ Sci (China) ; 91: 117-127, 2020 May.
Article in English | MEDLINE | ID: mdl-32172960

ABSTRACT

Biological nitrogen removal process could be affected due to the presence of heavy metals owing to their toxicity and accumulation in the sludge. In this study, the impact of Cu2+ shock on a long-term nitritation operation was investigated in an air-lift reactor with self-recirculation. Both the dynamics of microbial community and inhibition kinetics under Cu2+ stress were ascertained. The results showed that Cu2+ exerted severe inhibition on nitritation performance of an air-lift reactor (ALR) at 25 mg/L. The corresponding NH4+-N removal efficiency decreased to below 50%, which was mainly due to the variation of microbial community structure, especially the inhibition of nitrifiers like Nitrosomonas (the relative abundance decreased from 30% to 1% after Cu2+ inhibition). Kinetic parameters were obtained and compared after fitting the Haldane model. The long-term Cu2+ stress on the ALR aggravated the ammonium affinity and the resistance to substrate self-inhibition of the nitritation sludge, but reduced the resistance to Cu2+ inhibition. Furthermore, Cu2+ acted as uncompetitive inhibitor on nitritation process. Our results provide new insights into the nitritation characteristics under long-term Cu2+ stress.


Subject(s)
Ammonium Compounds , Microbiota , Bioreactors , Kinetics , Nitrogen , Oxidation-Reduction , Sewage
3.
Bioresour Technol ; 283: 138-147, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30903820

ABSTRACT

The toxicity of hexavalent chromium (Cr(VI)) is one of the challenges in implementing Anammox process to ammonium-rich wastewater treatment. However, the response of Anammox process to Cr(VI) stress and the inhibition mechanism remain unclear. Here, two Anammox UASB reactors were operated for 285 days under different Cr(VI) stresses. The results showed Anammox performance was not affected at low Cr(VI) concentration (i.e., 0-0.5 mg L-1), but was severely inhibited at 0.8 mg L-1. Attempts to domesticate Anammox process to higher Cr(VI) by lowering nitrogen loading rate were failed. Examination of Cr(VI) fate showed the occurrence of extracellular and intracellular Cr(VI) reduction to Cr(III). The inhibition was ascribed to the significant intracellular Cr(VI) reduction, accounting for 99.78% of the total Cr(VI) reduction. Moreover, under long-term Cr(VI) exposure, most nitrite was oxidized to nitrate. But microbial community showed no enrichment of Cr(VI) reducing bacteria and other nitrogen transformation-related bacteria.


Subject(s)
Ammonium Compounds/metabolism , Chromium/pharmacology , Nitrites/metabolism , Anaerobiosis/drug effects , Nitrates/metabolism , Nitrogen/metabolism , Oxidation-Reduction
4.
Sci Total Environ ; 657: 1227-1236, 2019 Mar 20.
Article in English | MEDLINE | ID: mdl-30677889

ABSTRACT

High adsorption capacity, good biocompatibility and low cost are highly demanded for biofilter used in ammonium-rich wastewater treatment. In this study, we used SEM, BET, XRD and 16S rRNA to document the evidence for good performance in adsorption and biodegradation in aged refuse. Parallel experiment between raw and inert refuse showed ammonium adsorption occurred at the initial week, with the highest ammonium removal efficiency of 90.36%, but saturated during the subsequent long-term operation. Meanwhile, over 6months' operation of an aged refuse biofilter was conducted to confirm that nitrification was the main pathway of ammonium conversion. The maximum nitrogen loading rate could reach up to as high as 1.28kg/m3/d, with ammonium removal efficiency at 99%. Further, high nitrifier biodiversity were detected with 'Nitrosomonas' and 'Nitrospira' in domination in the refuse. However, Nitrospira would outcompete Nitrosomonas under the oxygen limiting condition and resulted in the failure of partial nitrification. The physicochemical and biological analysis show that biodegradation is the main ammonium conversion pathway, which is the critical finding of this work. This investigation would help to accelerate the application of the aged refuse process in ammonium-rich wastewater treatment.


Subject(s)
Bioreactors/microbiology , Nitrification , Waste Disposal, Fluid/methods , Ammonia , Biodegradation, Environmental , Biodiversity , Filtration/instrumentation , Filtration/methods , Garbage , Microbial Consortia/genetics , Microscopy, Electron, Scanning , RNA, Ribosomal, 16S , Time Factors , Waste Disposal, Fluid/instrumentation , X-Ray Diffraction
5.
Environ Sci Pollut Res Int ; 25(36): 36680-36692, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30377966

ABSTRACT

The adsorption behavior of Zn2+ in four different biological sludge systems, i.e. activated sludge, denitrification sludge, short-cut nitrification sludge, and anammox granules, was investigated. The results indicated that all sludge samples possessed considerable potential for Zn2+ adsorption. Short-cut nitrification sludge possessed the highest Zn2+ maximum adsorption capacity (qm) of 36.4 mg g SS-1, which was much higher than other sludges applied (12.8-14.7 mg g SS-1). Besides, the adsorption rate for short-cut nitrification sludge was fastest among the four types of sludge after fitting with a pseudo-second-order rate equation. Comparing with the physicochemical properties of the four sludges, the soluble extracellular polymeric substances (EPS), especially soluble polysaccharide (PS), played a prior role in binding metal cations (i.e., Zn). The present study also showed that with less than 30% of Zn2+ trapped by EPS, 61.6-71.9% of Zn2+could be harvested directly by cells, indicating that the protecting capability by EPS was limited. Therefore, it is important to remove metal ions as early as possible if the activated sludge processes encountered high stress of heavy metal. Graphical abstract ᅟ.


Subject(s)
Extracellular Polymeric Substance Matrix/chemistry , Sewage/chemistry , Sewage/microbiology , Water Pollutants, Chemical/analysis , Water Purification/methods , Zinc/analysis , Adsorption , Aerobiosis , Anaerobiosis , China , Denitrification , Models, Theoretical , Nitrification
6.
ACS Appl Mater Interfaces ; 10(26): 22381-22388, 2018 Jul 05.
Article in English | MEDLINE | ID: mdl-29902919

ABSTRACT

Highly catalytic electrodes play a vital role in exploiting the capability of vanadium redox flow batteries (VRFBs), but they suffer from a tedious synthesis process and ambiguous interaction mechanisms for catalytic sites. Herein, a facile urea pyrolysis process was applied to prepare graphitic carbon nitride-modified graphite felt (GF@CN), and by the virtue of a density functional theory-assisted calculation, the electron-rich pyridinic nitrogen atom of CN granules is demonstrated as the adsorption center for redox species and plays the key role in improving the performance of VRFBs, with 800 cycles and an energy efficiency of 75% at 150 mA cm-2. Such experimental and computational collaborative investigations guide a realizable and cost-effective solution for other high-power flow batteries.

7.
Environ Sci Pollut Res Int ; 25(8): 7600-7607, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29282669

ABSTRACT

Flotation waste of copper slag (FWCS), neutralization sludge (NS), and arsenic-containing gypsum sludge (GS), both of which are difficult to dispose of, are major solid wastes produced by the copper smelting. This study focused on the co-treatment of FWCS, NS, and GS for solidification/stabilization of arsenic and heavy metals with minimal cement clinker. Firstly, the preparation parameters of binder composed of FWCS, NS, and cement clinker were optimized to be FWCS dosage of 40%, NS dosage of 10%, cement clinker dosage of 50%, mill time of 1.5 h, and water-to-binder ratio of 0.25. On these conditions, the unconfined compressive strength (UCS) of the binder reached 43.24 MPa after hydration of 28 days. Then, the binder was used to solidify/stabilize the As-containing GS. When the mass ratio of binder-to-GS was 5:5, the UCS of matrix can reach 11.06 MPa after hydration of 28 days, meeting the required UCS level of MU10 brick in China. Moreover, arsenic and other heavy metals in FWCS, NS, and GS were effectively solidified or stabilized. The heavy metal concentrations in leachate were much lower than those in the limits of China standard leaching test (CSLT). Therefore, the matrices were potential to be used as bricks in some constructions. XRD analysis shows that the main hydration products of the matrix were portlandite and calcium silicate hydrate. These hydration products may play a significant role in the stabilization/solidification of arsenic and heavy metals.


Subject(s)
Arsenic/chemistry , Calcium Compounds/chemistry , Calcium Sulfate/chemistry , Construction Materials/analysis , Copper/chemistry , Metals, Heavy/analysis , Sewage/analysis , Silicates/chemistry , Arsenic/analysis , Calcium Sulfate/analysis , China , Copper/analysis , Metals, Heavy/chemistry
8.
J Hazard Mater ; 344: 343-349, 2018 Feb 15.
Article in English | MEDLINE | ID: mdl-29080487

ABSTRACT

A new method in which Pb/Zn smelter waste containing arsenic and heavy metals (arsenic sludge), red mud and lime are utilized to prepare red mud-based cementitious material (RCM) is proposed in this study. XRD, SEM, FTIR and unconfined compressive strength (UCS) tests were employed to assess the physicochemical properties of RCM. In addition, ettringite and iron oxide-containing ettringite were used to study the hydration mechanism of RCM. The results show that the UCS of the RCM (red mud+arsenic sludge+lime) was higher than that of the binder (red mud+arsenic sludge). When the mass ratio of m (binder): m (lime) was 94:6 and then maintained 28days at ambient temperature, the UCS reached 12.05MPa. The red mud has potential cementitious characteristics, and the major source of those characteristics was the aluminium oxide. In the red mud-arsenic sludge-lime system, aluminium oxide was effectively activated by lime and gypsum to form complex hydration products. Some of the aluminium in ettringite was replaced by iron to form calcium sulfoferrite hydrate. The BCR and leaching toxicity results show that the leaching concentration was strongly dependent on the chemical speciation of arsenic and the hydration products. Therefore, the investigated red mud and arsenic sludge can be successfully utilized in cement composites to create a red mud-based cementitious material.

10.
Bull Environ Contam Toxicol ; 99(4): 511-517, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28785982

ABSTRACT

Antimony (Sb) and arsenic (As) contaminations are the well reported and alarming issues of various contaminated smelting and mining sites all over the world, especially in China. The present hydroponic study was to assess the capacity of Vetiveria zizanioides for Sb, As and their interactive accumulations. The novelty of the present research is this that the potential of V. zizanioides for Sb and As alone and their interactive accumulation are unaddressed. This is the first report about the interactive co-accumulation of Sb and As in V. zizanioides. Highest applied Sb and As contaminations significantly inhibited the plant growth. Applied Sb and As alone significantly increased their concentrations in the roots/shoot of V. zizanioides. While co-contamination of Sb and As steadily increased their concentrations, in the plant. The co-contamination of Sb and As revealed a positive correlation between the two, as they supplemented the uptake and accumulation of each other. The overall translocation (TF) and bioaccumulation factors (BF) of Sb in V. zizanioides, were 0.75 and 4. While the TF and BF of As in V. zizanioides, were 0.86 and 10. V. zizanioides proved as an effective choice for the phytoremediation and ecosystem restoration of Sb and As contaminated areas.


Subject(s)
Antimony/analysis , Arsenic/analysis , Chrysopogon/growth & development , Soil Pollutants/analysis , Biodegradation, Environmental , China , Chrysopogon/drug effects , Hydroponics , Mining , Models, Theoretical , Plant Roots/drug effects , Plant Roots/growth & development
11.
J Biosci Bioeng ; 122(6): 722-729, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27373490

ABSTRACT

Batch experiments were conducted to investigate the short-term effects of Cd(II), Hg(II), Pb(II), As(III) and Cr(VI) on anammox activity, which are considered to be the top 5 toxic heavy metals in China. The IC50 values of Cd(II), Hg(II), Pb(II) and Cr(VI) were calculated to be 7.00, 2.33, 10.40 and 9.84 mg/L, respectively, while As(III) caused only 29.67% decrease in SAA even at the dosage of 60 mg/L. The evaluation of metal concentrations in liquid and sludge revealed that anammox biomass hold a high heavy-metal accumulation ability, which was hypothesized to be the key reason of activity inhibition. The functional groups possessed by anammox biomass and the extracellular polymeric substance (EPS) might contribute to the attachment of heavy metals. Especially, microbial reduction of Cr(VI) to Cr(III) inside the granules was discovered, which was considered to relieve the Cr(VI) inhibition under concentrations lower than 8.96 mg/L.


Subject(s)
Ammonium Compounds/chemistry , Arsenic/toxicity , Cadmium/toxicity , Lead/toxicity , Mercury/toxicity , Sewage/chemistry , Arsenic/chemistry , Batch Cell Culture Techniques , Cadmium/chemistry , China , Chromium/chemistry , Lead/chemistry , Mercury/chemistry , Sewage/microbiology
12.
J Environ Manage ; 181: 756-761, 2016 Oct 01.
Article in English | MEDLINE | ID: mdl-27449964

ABSTRACT

Wastewater treatment sludge from a primary lead-zinc smelter is characterized as hazardous waste and requires treatment prior to disposal due to its significant arsenic and heavy metals contents. This study presents a method for the stabilization of arsenic sludge that uses a slag based curing agent composed of smelting slag, cement clinker and limestone. The Unconfined Compressive Strength (UCS) test, the China Standard Leaching Test (CSLT), and the Toxicity Characteristic Leaching Procedures (TCLP) were used to physically and chemically characterize the solidified sludge. The binder ratio was determined according to the UCS and optimal experiments, and the optimal mass ratio of m (smelting slag): m (cement clinker): m (gypsum sludge): m (limestone) was 70:13:12:5. When the binder was mixed with arsenic sludge using a mass ratio of 1:1 and then maintained at 25 °C for 28 d, the UCS reached 9.30 MPa. The results indicated that the leached arsenic content was always less than 5 mg/L, which is a safe level, and does not contribute to recontamination of the environment. The arsenic sludge from the Zn/Pb metallurgy plant can be blended with cement clinker and smelting slag materials for manufacturing bricks and can be recycled as construction materials.


Subject(s)
Arsenic/chemistry , Environmental Restoration and Remediation/methods , Hazardous Waste , Metallurgy , Metals, Heavy/chemistry , Sewage/chemistry , Wastewater/chemistry , Water Pollutants, Chemical/chemistry , Arsenic/analysis , China , Construction Materials , Industrial Waste/analysis , Lead/chemistry , Recycling , Water Pollutants, Chemical/analysis , Zinc/chemistry
13.
Sci Total Environ ; 562: 427-434, 2016 08 15.
Article in English | MEDLINE | ID: mdl-27100018

ABSTRACT

Acidification is a major constraint for revegetation of sulphidic metal-contaminated soils, as exemplified by the limited literature reporting the successful phytostabilization of mine soils associated with pH<3 and high acidification potential. In this study, a combination of ameliorants (lime and chicken manure) and five acid-tolerant plant species has been employed in order to establish a self-sustaining vegetation cover on an extremely acid (pH<3) polymetallic pyritic mine waste heap in southern China exhibiting high acidification potential. The results from the first two-year data showed that the addition of the amendments and the establishment of a plant cover were effective in preventing soil acidification. Net acid-generating potential of the mine soil decreased steadily, whilst pH and acid neutralization capacity increased over time. All the five acid-tolerant plants colonized successfully in the acidic metal-contaminated soil and developed a good vegetation cover within six months, and subsequent vegetation development enhanced organic matter accumulation and nutrient element status in the mine soil. The two-year remediation program performed on this extremely acid metalliferous soil indicated that aided phytostabilization can be a practical and effective restoration strategy for such extremely acid mine soils.


Subject(s)
Biodegradation, Environmental , Mining , Soil Pollutants/analysis , Soil/chemistry , Adaptation, Physiological , China , Plant Development , Plants
14.
Biodegradation ; 27(2-3): 131-44, 2016 06.
Article in English | MEDLINE | ID: mdl-27091324

ABSTRACT

The short-cut nitrification (SCN) performance of an airlift reactor (ALR) was investigated under increasing bicarbonate condition. The sequential increase of bicarbonate from 2.5 to 7.0 g/L accelerated the nitrite accumulation and improved the NAP to 99 %. With the increase of bicarbonate dose to 11 g/L, the ammonium removal efficiency and the ammonium removal rate (ARR) were improved to 95.1 % and 0.57 kg/m(3)/day, respectively. However, the elevation of bicarbonate concentration from 11.0 to 14.0 g/L gradually depreciated the nitrite accumulation percentage to 62.5 %. Then, the reactor was operated in increasing ammonium strategy to increase the nitrogen loading rate (NLR) to 1.1 kg/m(3)/day under 700 mg/L influent ammonium concentration. The ARR and nitrite production rate were elevated to 1.1 and 0.9 kg/m(3)/day, respectively. The SCN performance was improved to 1.8 kg/m(3)/day (NLR) by the subsequent progressive shortening of HRT to 4.8 h at ammonium concentration of 350 mg/L, which was 1.6 times higher than that of the increasing ammonium strategy. Chemical analysis with EDS, FTIR and XRD confirmed the presence of CaCO3 precipitates on biomass surface during the long-term operation under high bicarbonate conditions. The attachment of precipitates to the SCN sludge helped to improve the biomass settleability and finally enhanced the SCN performance of the ALR.


Subject(s)
Bicarbonates/chemistry , Biomass , Bioreactors , Calcium Carbonate/chemistry , Nitrification , Ammonium Compounds/metabolism , Biodegradation, Environmental , Waste Disposal, Fluid
15.
Biomed Res Int ; 2016: 1423828, 2016.
Article in English | MEDLINE | ID: mdl-27022603

ABSTRACT

Arsenic (As) is identified by the EPA as the third highest toxic inorganic contaminant. Almost every 9th or 10th human in more than 70 countries including mainland China is affected by As. Arsenic along with other toxins not only affects human life but also creates alarming situations such as the deterioration of farm lands and desertion of industrial/mining lands. Researchers and administrators have agreed to opt for phytoremediation of As over costly cleanups. Boehmeria nivea L. can soak up various heavy metals, such as Sb, Cd, Pb, and Zn. But the effect of As pollution on the biology and metabolism of B. nivea has been somewhat overlooked. This study attempts to evaluate the extent of As resistance, chlorophyll content, and metabolic changes in As-polluted (5, 10, 15, and 20 mg L(-1) As) B. nivea in hydroponics. Toxic effects of As in the form of inhibited growth were apparent at the highest level of added As. The significant changes in the chlorophyll, electrolyte leakage, and H2O2, significant increases in As in plant parts, catalase (CAT), and malondialdehyde (MDA), with applied As revealed the potential of B. nivea for As decontamination. By employing the metabolic machinery of B. nivea, As was sustainably removed from the contaminated areas.


Subject(s)
Arsenic/metabolism , Boehmeria/metabolism , Soil Pollutants/metabolism , Biodegradation, Environmental , Humans , Mining
16.
Environ Sci Pollut Res Int ; 23(8): 7470-81, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26711292

ABSTRACT

Ramie (Boehmeria nivea L.) is the oldest cash fiber crop in China and is widely grown in antimony (Sb) mining areas. To evaluate the extent of Sb resistance and tolerance, the growth, tolerance index (TI), Sb content in plant parts and in Hoagland solution, bioaccumulation factor (BF), photosynthesis, and physiological changes in Sb-contaminated B. nivea (20, 40, 80, and 200 mg L(-1) Sb) grown hydroponically were investigated. The Sb tolerance and resistance of ramie were clearly revealed by growth inhibition, a TI between 13 and 99 %, non-significant changes in the maximum quantum efficiency of photosystem (F v /F m ), energy-harvesting efficiency (photosystem II (PSII)) and single-photon avalanche diode (SPAD) value, a significant increase in Sb in plant parts, BF >1, and an increase in catalase (CAT) and malondialdehyde (MDA) at 200 mg L(-1) Sb. Under increasing Sb stress, nearly the same non-significant decline in the maximum quantum efficiency of photosystem (F v /F m ), energy-harvesting efficiency (PSII), relative quantum yield of photosystem II (φPSII), and photochemical quenching (qP), except for F v /F m at 20 mg L(-1) Sb, were recorded. SPAD values for chlorophyll under Sb stress showed an increasing trend, except for a slight decrease, i.e., <2 %, than the control SPAD value at 200 mg L(-1) Sb. With a continuous increase in MDA, superoxide dismutase (SOD), peroxidase (POD), and CAT activities were suppressed under Sb addition up to 40 mg L(-1) Sb and the addition of Sb enhanced enzyme production at 80 and 200 mg L(-1) Sb. A continuous decrease in SOD, POD, and CAT up to 40 mg L(-1) Sb and enhancements at ≥80 mg L(-1), along with the continuous enhancement of MDA activity and inhibited biomass production, clearly reveal the roles of these enzymes in detoxifying Sb stress and the defense mechanism of ramie at 80 mg L(-1) Sb. Thus, B. nivea constitutes a promising candidate for Sb phytoremediation at mining sites.


Subject(s)
Antimony/toxicity , Boehmeria/drug effects , Soil Pollutants/toxicity , Biodegradation, Environmental , Boehmeria/growth & development , Boehmeria/metabolism , Catalase/metabolism , China , Chlorophyll/metabolism , Malondialdehyde/metabolism , Mining , Peroxidase/metabolism , Photosynthesis/drug effects , Photosystem II Protein Complex/metabolism , Plant Leaves/drug effects , Plant Leaves/growth & development , Plant Leaves/metabolism , Superoxide Dismutase/metabolism
17.
Bioresour Technol ; 185: 134-42, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25768415

ABSTRACT

The partial nitrification (PN) performance under high ammonium concentrations was evaluated in an airlift reactor (ALR). The ALR was operated for 253days with stepwise elevation of ammonium concentration to 1400mg/L corresponding nitrogen loading rate of 2.1kg/m(3)/d. The ammonium removal rate was finally developed to 2.0kg/m(3)/d with average removal efficiency above 91% and nitrite accumulation percentage of 80%. Results showed that the combined effect of limited DO, high bicarbonate, pH and free ammonia (FA) contributed to the stable nitrite accumulation substantially. The biomass in the ALR was improved with the inception of granulation. Precipitates on biomass surface was unexpectedly experienced which might improve the settleability of PN biomass. Organic functional groups attached to the PN biomass suggested the possible absorbability to different types of pollutant. The results provided important evidence for the possibility of applying an ALR to treat high strength ammonium wastewater.


Subject(s)
Ammonium Compounds/metabolism , Bacteria, Anaerobic/metabolism , Bioreactors/microbiology , Nitrification/physiology , Water Pollutants, Chemical/metabolism , Water Purification/instrumentation , Air , Ammonium Compounds/administration & dosage , Ammonium Compounds/isolation & purification , Bacteria, Anaerobic/drug effects , Dose-Response Relationship, Drug , Equipment Design , Equipment Failure Analysis , Nitrification/drug effects , Water Pollutants, Chemical/isolation & purification
19.
Appl Microbiol Biotechnol ; 98(4): 1907-12, 2014 Feb.
Article in English | MEDLINE | ID: mdl-23948726

ABSTRACT

There is no commercial or industrial-scale process for the remediation of black liquor using microorganisms to date. One of the most important causes is that most microorganisms are not able to use lignin as their principal metabolic carbon or energy source. The bacterial strain Comamonas sp. B-9 has shown remarkable ability to degrade kraft lignin and decolorize black liquor using lignin as its principal metabolic carbon and energy source. This report looks at the depolymerization and decolorization of kraft lignin by Comamonas sp. B-9. The degradation, decolorization, and total carbon removal reached 45, 54, and 47.3%, respectively, after 7 days treatment. Comamonas sp. B-9 was capable of depolymerizing kraft lignin effectively as analyzed by gel permeation chromatography and decolorization via degrading benzene ring structures as shown using Fourier transform infrared spectroscopy analysis.


Subject(s)
Comamonas/metabolism , Lignin/metabolism , Gas Chromatography-Mass Spectrometry , Spectroscopy, Fourier Transform Infrared
20.
Environ Sci Pollut Res Int ; 20(9): 6050-8, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23529403

ABSTRACT

Floatation tailings (FT) are the main by-products of the hydrothermal sulfidation-flotation process. FT (FT1 and FT2) were obtained by treating two different neutralization sludges (NS) (NS1 and NS2). This paper quantitatively evaluated the environmental risks of heavy metals (Zn, Cd, Cu, Pb, and As) in FT versus NS. The total concentration and leaching rates (R 2) of heavy metals in FT were much lower than those in NS, demonstrating that the hydrothermal sulfidation-flotation process was able to effectively suppress the mobility and leachability of heavy metals. The BCR-three sequence leaching procedure of FT confirmed that all metals were transformed into more stable forms (residue and oxidizable forms) than were found that in NS. The potential ecological risk index indicated that the overall risks caused by heavy metals decreased significantly from 6627.59 and 7229.67 (very serious risk) in NS1 and NS2, respectively, to 80.26 and 76.27 (low risk) in FT1 and FT2, respectively. According to the risk assessment code, none of the heavy metals in FT posed significant risk to the natural environment except Zn (with low risk). In general, the risk of heavy metals in FT had been well controlled.


Subject(s)
Industrial Waste/analysis , Metals, Heavy/chemistry , Refuse Disposal/methods , Water Pollutants, Chemical/chemistry , Environmental Monitoring , Hydrogen-Ion Concentration , Metallurgy/methods , Mining , Risk Factors , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...