Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
New Phytol ; 240(3): 1015-1033, 2023 11.
Article in English | MEDLINE | ID: mdl-37606225

ABSTRACT

Germline development is a key step in sexual reproduction. Sexual plant reproduction begins with the formation of haploid spores by meiosis of megaspore mother cells (MMCs). Although many evidences, directly or indirectly, show that epigenetics plays an important role in MMC specification, how it controls the commitment of the MMC to downstream stages of germline development is still unclear. Electrophoretic mobility shift assay (EMSA), western blot, immunofluorescence, and chromatin immunoprecipitation coupled with quantitative PCR analyses were performed. Genetic interactions between BZR1 transcription factor family and the SWR1-SDG2-ER pathway in the control of female germline development were further studied. The present findings showed in Arabidopsis that two epigenetic factors, the chromatin remodeling complex SWI2/SNF2-RELATED 1 (SWR1) and a writer for H3K4me3 histone modification SET DOMAIN GROUP 2 (SDG2), genetically interact with the ERECTA (ER) receptor kinase signaling pathway and regulate female germline development by restricting the MMC cell fate to a single cell in the ovule primordium and ensure that only that single cell undergoes meiosis and subsequent megaspore degeneration. We also showed that SWR1-SDG2-ER signaling module regulates female germline development by promoting the protein accumulation of BZR1 transcription factor family on the promoters of primary miRNA processing factors, HYPONASTIC LEAVES 1 (HYL1), DICER-LIKE 1 (DCL1), and SERRATE (SE) to activate their expression. Our study elucidated a Gene Regulation Network that provides new insights for understanding how epigenetic factors and receptor kinase signaling pathways function in concert to control female germline development in Arabidopsis.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Epigenesis, Genetic , Gene Expression Regulation, Plant , Germ Cells/metabolism , Meiosis/genetics , RNA-Binding Proteins/metabolism , Signal Transduction/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
2.
Plants (Basel) ; 12(14)2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37514287

ABSTRACT

Gibberellin (GAs) plays an important regulatory role in the development and growth of pineapple (Ananas comosus (L.) Merr.). Bioinformatics was used to confirm the differential expression of GA2 gibberellin oxidase gene AcGA2oxs in the pineapple genome, which laid the foundation for exploring its role in pineapple. In this study, 42 GA2ox genes (AcGA2oxs) were identified in the pineapple genome, named from AcGA2ox1 to AcGA2ox42, and divided into four groups according to phylogenetic analysis. We also analyzed the gene structure, conserved motifs and chromosome localization of AcGA2oxs. AcGA2oxs within the same group had similar gene structure and motifs composition. Collinear analysis and cis-element analysis provided the basis for understanding the evolution and function of GA2ox genes in pineapple. In addition, we selected different tissue parts to analyze the expression profile of AcGA2oxs, and the results show that 41 genes were expressed, except for AcGA2ox18. AcGA2ox18 may not be expressed in these sites or may be pseudogenes. qRT-PCR (real-time fluorescence quantitative PCR) was used to detect the relative expression levels of the GA2ox gene family under different concentrations of GA3 treatment, and it was found that AcGA2ox gene expression was upregulated in different degrees under GA3 treatment. These results provide useful information for further study on the evolution and function of the GA2ox family in pineapple.

3.
Plants (Basel) ; 12(4)2023 Feb 19.
Article in English | MEDLINE | ID: mdl-36840288

ABSTRACT

Reactive oxygen species (ROS), a type of oxygen monoelectronic reduction product, play integral roles in root growth and development. The epigenetic mechanism plays a critical role in gene transcription and expression; however, its regulation of ROS metabolism in root development is still limited. We found that the chromatin remodeling complex SWR1 regulates root length and lateral root formation in Arabidopsis. Our transcriptome results and gene ontology (GO) enrichment analysis showed that the oxidoreductase activity-related genes significantly changed in mutants for the Arabidopsis SWR1 complex components, such as arp6 and pie1, and histone variant H2A.Z triple mutant hta8 hta9 hta11. The three encoding genes in Arabidopsis are the three H2A.Z variants hta8, hta9, and hta11. Histochemical assays revealed that the SWR1 complex affects ROS accumulation in roots. Furthermore, chromatin immunoprecipitation quantitative real-time PCR (ChIP-qPCR) analysis showed that the reduced H2A.Z deposition in oxidoreductase activity-related genes caused ROS to accumulate in arp6, pie1, and hta8 hta9 hta11. H2A.Z deposition-deficient mutants decreased after the trimethylation of lysine 4 on histone H3 (H3K4me3) modifications and RNA polymerase II (Pol II) enrichment, and increased after the trimethylation of lysine 27 on histone H3 (H3K27me3) modifications, which may account for the expression change in oxidoreductase activity-related genes. In summary, our results revealed that the chromatin complex SWR1 regulates ROS accumulation in root development, highlighting the critical role of epigenetic mechanisms.

4.
Plant Cell ; 35(5): 1455-1473, 2023 04 20.
Article in English | MEDLINE | ID: mdl-36748257

ABSTRACT

In most flowering plants, the female germline is initiated in the subepidermal L2 layer of ovule primordia forming a single megaspore mother cell (MMC). How signaling from the L1 (epidermal) layer could contribute to the gene regulatory network (GRN) restricting MMC formation to a single cell is unclear. We show that EPIDERMAL PATTERNING FACTOR-like (EPFL) peptide ligands are expressed in the L1 layer, together with their ERECTA family (ERf) receptor kinases, to control female germline specification in Arabidopsis thaliana. EPFL-ERf dependent signaling restricts multiple subepidermal cells from acquiring MMC-like cell identity by activating the expression of the major brassinosteroid (BR) receptor kinase BRASSINOSTEROID INSENSITIVE 1 and the BR-responsive transcription factor BRASSINOZOLE RESISTANT 1 (BZR1). Additionally, BZR1 coordinates female germline specification by directly activating the expression of a nucleolar GTP-binding protein, NUCLEOSTEMIN-LIKE 1 (NSN1), which is expressed in early-stage ovules excluding the MMC. Mutants defective in this GRN form multiple MMCs resulting in a strong reduction of seed set. In conclusion, we uncovered a ligand/receptor-like kinase-mediated signaling pathway acting upstream and coordinating BR signaling via NSN1 to restrict MMC differentiation to a single subepidermal cell.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Brassinosteroids/metabolism , Signal Transduction/genetics , Carrier Proteins/metabolism , Germ Cells/metabolism , Gene Expression Regulation, Plant/genetics , DNA-Binding Proteins/metabolism
5.
Int J Mol Sci ; 23(18)2022 Sep 19.
Article in English | MEDLINE | ID: mdl-36142886

ABSTRACT

Soybean is one of the most important food crops in the world. However, with the environmental change in recent years, many environmental factors like drought, salinity, heavy metal, and disease seriously affected the growth and development of soybean, causing substantial economic losses. In this study, we screened a bZIP transcription factor gene, GmbZIP152, which is significantly induced by Sclerotinia sclerotiorum (S. sclerotiorum), phytohormones, salt-, drought-, and heavy metal stresses in soybean. We found that overexpression of GmbZIP152 in Arabidopsis (OE-GmbZIP152) enhances the resistance to S. sclerotiorum and the tolerance of salt, drought, and heavy metal stresses compared to wild-type (WT). The antioxidant enzyme related genes (including AtCAT1, AtSOD, and AtPOD1) and their enzyme activities are induced by S. sclerotiorum, salt, drought, and heavy metal stress in OE-GmbZIP152 compared to WT. Furthermore, we also found that the expression level of biotic- and abiotic-related marker genes (AtLOX6, AtACS6, AtERF1, and AtABI2, etc.) were increased in OE-GmbZIP152 compared to WT under S. sclerotiorum and abiotic stresses. Moreover, we performed a Chromatin immunoprecipitation (ChIP) assay and found that GmbZIP152 could directly bind to promoters of ABA-, JA-, ETH-, and SA-induced biotic- and abiotic-related genes in soybean. Altogether, GmbZIP152 plays an essential role in soybean response to biotic and abiotic stresses.


Subject(s)
Arabidopsis , Glycine max , Antioxidants/metabolism , Arabidopsis/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Droughts , Gene Expression Regulation, Plant , Plant Growth Regulators/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Sodium Chloride/pharmacology , Glycine max/metabolism , Stress, Physiological/genetics
6.
Int J Mol Sci ; 23(11)2022 Jun 03.
Article in English | MEDLINE | ID: mdl-35682951

ABSTRACT

Pineapple (Ananas comosus (L.) Merr.) is an important tropical fruit with high economic value, and its growth and development are affected by the external environment. Drought and salt stresses are common adverse conditions that can affect crop quality and yield. WRKY transcription factors (TFs) have been demonstrated to play critical roles in plant stress response, but the function of pineapple WRKY TFs in drought and salt stress tolerance is largely unknown. In this study, a pineapple AcWRKY31 gene was cloned and characterized. AcWRKY31 is a nucleus-localized protein that has transcriptional activation activity. We observed that the panicle length and seed number of AcWRKY31 overexpression transgenic rice plants were significantly reduced compared with that in wild-type plant ZH11. RNA-seq technology was used to identify the differentially expressed genes (DEGs) between wild-type ZH11 and AcWRKY31 overexpression transgenic rice plants. In addition, ectopic overexpression of AcWRKY31 in rice and Arabidopsis resulted in plant oversensitivity to drought and salt stress. qRT-PCR analysis showed that the expression levels of abiotic stress-responsive genes were significantly decreased in the transgenic plants compared with those in the wild-type plants under drought and salt stress conditions. In summary, these results showed that ectopic overexpression of AcWRKY31 reduced drought and salt tolerance in rice and Arabidopsis and provided a candidate gene for crop variety improvement.


Subject(s)
Ananas , Arabidopsis , Oryza , Ananas/genetics , Ananas/metabolism , Arabidopsis/metabolism , Droughts , Gene Expression Regulation, Plant , Oryza/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/metabolism , Salt Tolerance/genetics , Stress, Physiological/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
7.
J Hazard Mater ; 430: 128446, 2022 05 15.
Article in English | MEDLINE | ID: mdl-35152105

ABSTRACT

Piezocatalysis driven by a gentle force possesses broad application prospects for degrading organic pollutants, sterilisation, wound healing and tissue recovery. The flexible and industrially scalable poly(vinylidene fluoride) (PVDF) film is commonly used in piezocatalysis. However, under gentle force action, PVDF composite-based piezocatalysis is poor. Herein, a flexible porous film based on poly(vinylidene fluoride)-hexafluoro propylene (PVDF-HFP) is enhanced with Fenton fillers (α-Fe2O3 nanoparticles). α-Fe2O3 nanoparticles improve the piezoelectric catalysis performance of PVDF-HFP by the ß-phase enhancement and provide Fe3+ to react with H2O2 generated by the piezoelectric film itself, leading to an additional Fenton reaction. Meanwhile, the Fe3+/Fe2+ cycle in the Fenton process accelerates under the piezoelectric field, promoting the Fenton reaction for 6.9% degradation improvement. The study on Fe2O3/PVDF-HFP porous film with the piezo-Fenton reaction under flowing water may help promote new piezocatalysis designs with high efficiency for self-powered environmental purification.


Subject(s)
Hydrogen Peroxide , Polyvinyls , Fluorocarbon Polymers , Porosity , Water
8.
iScience ; 24(11): 103236, 2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34746701

ABSTRACT

Inflorescence architecture is diverse in flowering plants, and two determinants of inflorescence architecture are the inflorescence meristem and pedicel length. Although the ERECTA (ER) signaling pathway, in coordination with the SWR1 chromatin remodeling complex, regulates inflorescence architecture with subsequent effects on pedicel elongation, the mechanism underlying SWR1-ER signaling pathway regulation of inflorescence architecture remains unclear. This study determined that SDG2 genetically interacts with the SWR1-ER signaling pathways in regulating inflorescence architecture. Transcriptome results showed that auxin might potentially influence inflorescence growth mediated by SDG2 and SWR1-ER pathways. SWR1 and ER signaling are required to enrich H2A.Z histone variant and SDG2 regulated SDG2-mediated H3K4me3 histone modification at auxin-related genes and H2A.Z histone variant enrichment. Our study shows how the regulation of inflorescence architecture is mediated by SDG2 and SWR1-ER, which affects auxin hormone signaling pathways.

9.
iScience ; 24(6): 102642, 2021 Jun 25.
Article in English | MEDLINE | ID: mdl-34151234

ABSTRACT

Soybean, one of the most valuable oilseed crops, is under constant pressure from pathogens. bZIP transcription factors (TFs) composing one of the largest TF families in plants have diverse functions. Biochemical and physiological analyses were performed to characterize the regulatory roles of soybean bZIP TF GmbZIP15 in response to pathogens. We found that transgenic soybean plants overexpressing GmbZIP15 has increased resistance against Sclerotinia sclerotiorum and Phytophthora sojae. Besides, GmbZIP15 regulates pathogen response by modulating the antioxidant defense system and phytohormone signaling. In addition, we performed chromatin immunoprecipitation sequencing to identify the downstream genes of GmbZIP15 in response to S. sclerotiorum and found that GmbZIP15 can activate or repress the expression of defense-related genes through direct promoter binding. Taken together, these results indicate that GmbZIP15 plays a positive role in pathogen resistance in soybean, and this activity may be dependent on phytohormone signaling.

10.
PeerJ ; 9: e11329, 2021.
Article in English | MEDLINE | ID: mdl-33987013

ABSTRACT

Transcription factors (TFs), such as heat shock transcription factors (HSFs), usually play critical regulatory functions in plant development, growth, and response to environmental cues. However, no HSFs have been characterized in pineapple thus far. Here, we identified 22 AcHSF genes from the pineapple genome. Gene structure, motifs, and phylogenetic analysis showed that AcHSF families were distinctly grouped into three subfamilies (12 in Group A, seven in Group B, and four in Group C). The AcHSF promoters contained various cis-elements associated with stress, hormones, and plant development processes, for instance, STRE, WRKY, and ABRE binding sites. The majority of HSFs were expressed in diverse pineapple tissues and developmental stages. The expression of AcHSF-B4b/AcHSF-B4c and AcHSF-A7b/AcHSF-A1c were enriched in the ovules and fruits, respectively. Six genes (AcHSF-A1a , AcHSF-A2, AcHSF-A9a, AcHSF-B1a, AcHSF-B2a, and AcHSF-C1a) were transcriptionally modified by cold, heat, and ABA. Our results provide an overview and lay the foundation for future functional characterization of the pineapple HSF gene family.

11.
Plant Cell ; 33(5): 1530-1553, 2021 07 02.
Article in English | MEDLINE | ID: mdl-33570655

ABSTRACT

The coordinated development of sporophytic and gametophytic tissues is essential for proper ovule patterning and fertility. However, the mechanisms regulating their integrated development remain poorly understood. Here, we report that the Swi2/Snf2-Related1 (SWR1) chromatin-remodeling complex acts with the ERECTA receptor kinase-signaling pathway to control female gametophyte and integument growth in Arabidopsis thaliana by inhibiting transcription of the microRNA gene MIR398c in early-stage megagametogenesis. Moreover, pri-miR398c is transcribed in the female gametophyte but is then translocated to and processed in the ovule sporophytic tissues. Together, SWR1 and ERECTA also activate ARGONAUTE10 (AGO10) expression in the chalaza; AGO10 sequesters miR398, thereby ensuring the expression of three AGAMOUS-LIKE (AGL) genes (AGL51, AGL52, and AGL78) in the female gametophyte. In the context of sexual organ morphogenesis, these findings suggest that the spatiotemporal control of miRNA biogenesis, resulting from coordination between chromatin remodeling and cell signaling, is essential for proper ovule development in Arabidopsis.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Chromatin Assembly and Disassembly/genetics , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , MicroRNAs/metabolism , Ovule/growth & development , Protein Serine-Threonine Kinases/metabolism , Receptors, Cell Surface/metabolism , Signal Transduction , Arabidopsis/growth & development , Arabidopsis Proteins/genetics , MicroRNAs/genetics , Models, Biological , Mutation/genetics , Protein Serine-Threonine Kinases/genetics , Receptors, Cell Surface/genetics , Time Factors , Transcription, Genetic
12.
New Phytol ; 230(2): 737-756, 2021 04.
Article in English | MEDLINE | ID: mdl-33454980

ABSTRACT

The signaling pathway mediated by the receptor-like kinase ERECTA (ER) plays important roles in plant immune responses, but the underlying mechanism is unclear. Genetic interactions between ER signaling and the chromatin remodeling complex SWR1 in the control of plant immune responses were studied. Electrophoretic mobility shift assay and yeast one-hybrid analysis were applied to identify ER-WRKY33 downstream components. Chromatin immunoprecipitation analyses were further investigated. In this study, we show that the chromatin remodeling complex SWR1 enhances resistance to the white mold fungus Sclerotinia sclerotiorum in Arabidopsis thaliana via a process mediated by ER signaling. We identify a series of WRKY33 target YODA DOWNSTREAM (YDD) genes and demonstrate that SWR1 and ER signaling are required to enrich H2A.Z histone variant and H3K4me3 histone modification at YDDs and the binding of WRKY33 to YDD promoters upon S. sclerotiorum infection. We also reveal that the binding of WRKY33 to YDD promoters in turn promotes the enrichment of H2A.Z and H3K4me3 at YDD genes, thereby forming a positive regulatory loop to activate YDDs expression. Our study reveals how H2A.Z, H3K4me3 and ER signaling mutually regulate YDDs gene expression upon pathogen infection, highlighting the critical role of chromatin structure in ER-signaling-mediated plant immune responses.


Subject(s)
Arabidopsis Proteins , Chromatin , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Ascomycota , Gene Expression Regulation, Plant , Plant Immunity/genetics , Signal Transduction
13.
New Phytol ; 229(1): 414-428, 2021 01.
Article in English | MEDLINE | ID: mdl-32746499

ABSTRACT

Inflorescence architecture critically influences plant reproductive success and crop yield, and it reflects the activity of the inflorescence meristem and pedicel length. In Arabidopsis thaliana, the ERECTA (ER) signaling pathway and the SWR1 chromatin remodeling complex jointly regulate inflorescence architecture by promoting the expression of the PACLOBUTRAZOL RESISTANCE (PRE) gene family. However, how PREs regulate inflorescence architecture remains unclear. RNA-sequencing and chromatin immunoprecipitation coupled with quantitative PCR analyses were performed. Genetic interactions between HOMOLOG OF BEE2 INTERACTING WITH IBH1 (HBI1) and the SWR1-ER-MPK6 pathway in the control of inflorescence architecture were further studied. The present findings support that HBI1 functions downstream of PREs in the SWR1 and ER pathways to regulate inflorescence architecture by promoting pedicel elongation. Specifically, it binds to the promoters of the brassinosteroid (BR) biosynthesis gene CYP85A2 and a series of auxin-related genes, including auxin response factor ARF3, and promotes their expression. In turn, ARF3 can also bind to auxin signaling genes as well as CYP85A2 to activate their expression and promote pedicel elongation. Our study provides evidence that inflorescence architecture regulation by SWR1 and ER involves the HBI1 regulatory hub and its activation of both the BR and auxin hormone pathways.


Subject(s)
Arabidopsis Proteins , Brassinosteroids , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Indoleacetic Acids , Inflorescence/genetics , Inflorescence/metabolism , Signal Transduction
14.
PeerJ ; 8: e10014, 2020.
Article in English | MEDLINE | ID: mdl-33024641

ABSTRACT

Pineapple (Ananas comosus (L.) Merr.) is an important tropical fruit with high economic value. The quality and yield of pineapple will be affected by various environmental conditions. Under adverse conditions, plants can produce a complex reaction mechanism to enhance their resistance. It has been reported that the member of ethylene responsive transcription factors (ERFs) plays a crucial role in plant developmental process and stress response. However, the function of these proteins in pineapple remains limited. In this study, a total of 74 ERF genes (AcoERFs) were identified in pineapple genome, named from AcoERF1 to AcoERF74, and divided into 13 groups based on phylogenetic analysis. We also analyzed gene structure, conserved motif and chromosomal location of AcoERFs, and the AcoERFs within the same group possess similar gene structures and motif compositions. Three genes (AcoERF71, AcoERF73 and AcoERF74) were present on unanchored scaffolds, so they could not be conclusively mapped on chromosome. Synteny and cis-elements analysis of ERF genes provided deep insight into the evolution and function of pineapple ERF genes. Furthermore, we analyzed the expression profiling of AcoERF in different tissues and developmental stages, and 22 AcoERF genes were expressed in all examined tissues, in which five genes (AcoERF13, AcoERF16, AcoERF31, AcoERF42, and AcoERF65) had high expression levels. Additionally, nine AcoERF genes were selected for functional verification by qRT-PCR. These results provide useful information for further investigating the evolution and functions of ERF family in pineapple.

15.
Int J Mol Sci ; 21(20)2020 Oct 21.
Article in English | MEDLINE | ID: mdl-33096644

ABSTRACT

Soybean (Glycine max), as an important oilseed crop, is constantly threatened by abiotic stress, including that caused by salinity and drought. bZIP transcription factors (TFs) are one of the largest TF families and have been shown to be associated with various environmental-stress tolerances among species; however, their function in abiotic-stress response in soybean remains poorly understood. Here, we characterized the roles of soybean transcription factor GmbZIP15 in response to abiotic stresses. The transcript level of GmbZIP15 was suppressed under salt- and drought-stress conditions. Overexpression of GmbZIP15 in soybean resulted in hypersensitivity to abiotic stress compared with wild-type (WT) plants, which was associated with lower transcript levels of stress-responsive genes involved in both abscisic acid (ABA)-dependent and ABA-independent pathways, defective stomatal aperture regulation, and reduced antioxidant enzyme activities. Furthermore, plants expressing a functional repressor form of GmbZIP15 exhibited drought-stress resistance similar to WT. RNA-seq and qRT-PCR analyses revealed that GmbZIP15 positively regulates GmSAHH1 expression and negatively regulates GmWRKY12 and GmABF1 expression in response to abiotic stress. Overall, these data indicate that GmbZIP15 functions as a negative regulator in response to salt and drought stresses.


Subject(s)
Basic-Leucine Zipper Transcription Factors/genetics , Glycine max/physiology , Plant Proteins/genetics , Salt Tolerance/genetics , Arabidopsis/genetics , Arabidopsis/physiology , Arabidopsis Proteins/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Dehydration/genetics , Droughts , Gene Expression Profiling , Gene Expression Regulation, Plant , Plant Proteins/metabolism , Plant Stomata/genetics , Plant Stomata/physiology , Plants, Genetically Modified , Reactive Oxygen Species/metabolism , Glycine max/genetics , Stress, Physiological/genetics
16.
Int J Mol Sci ; 21(16)2020 Aug 10.
Article in English | MEDLINE | ID: mdl-32785037

ABSTRACT

Drought and salt stress are the main environmental cues affecting the survival, development, distribution, and yield of crops worldwide. MYB transcription factors play a crucial role in plants' biological processes, but the function of pineapple MYB genes is still obscure. In this study, one of the pineapple MYB transcription factors, AcoMYB4, was isolated and characterized. The results showed that AcoMYB4 is localized in the cell nucleus, and its expression is induced by low temperature, drought, salt stress, and hormonal stimulation, especially by abscisic acid (ABA). Overexpression of AcoMYB4 in rice and Arabidopsis enhanced plant sensitivity to osmotic stress; it led to an increase in the number stomata on leaf surfaces and lower germination rate under salt and drought stress. Furthermore, in AcoMYB4 OE lines, the membrane oxidation index, free proline, and soluble sugar contents were decreased. In contrast, electrolyte leakage and malondialdehyde (MDA) content increased significantly due to membrane injury, indicating higher sensitivity to drought and salinity stresses. Besides the above, both the expression level and activities of several antioxidant enzymes were decreased, indicating lower antioxidant activity in AcoMYB4 transgenic plants. Moreover, under osmotic stress, overexpression of AcoMYB4 inhibited ABA biosynthesis through a decrease in the transcription of genes responsible for ABA synthesis (ABA1 and ABA2) and ABA signal transduction factor ABI5. These results suggest that AcoMYB4 negatively regulates osmotic stress by attenuating cellular ABA biosynthesis and signal transduction pathways.


Subject(s)
Abscisic Acid/metabolism , Ananas/metabolism , Osmotic Pressure/drug effects , Repressor Proteins/metabolism , Signal Transduction/genetics , Abscisic Acid/pharmacology , Arabidopsis/genetics , Arabidopsis/metabolism , Droughts , Gene Expression Regulation, Plant/drug effects , Germination/drug effects , Germination/genetics , Oryza/genetics , Oryza/metabolism , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Repressor Proteins/genetics , Salicylic Acid/pharmacology , Salt Stress/drug effects , Salt Stress/genetics , Signal Transduction/drug effects
17.
Int J Mol Sci ; 21(13)2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32630201

ABSTRACT

The basic leucine zipper (bZIP) is a plant-specific transcription factor family that plays crucial roles in response to biotic and abiotic stresses. However, little is known about the function of bZIP genes in soybean. In this study, we isolated a bZIP gene, GmbZIP19, from soybean. A subcellular localization study of GmbZIP19 revealed its nucleus localization. We showed that GmbZIP19 expression was significantly induced by ABA (abscisic acid), JA (jasmonic acid) and SA (salicylic acid), but reduced under salt and drought stress conditions. Further, GmbZIP19 overexpression Arabidopsis lines showed increased resistance to S. sclerotiorum and Pseudomonas syringae associated with upregulated ABA-, JA-, ETH- (ethephon-)and SA-induced marker genes expression, but exhibited sensitivity to salt and drought stresses in association with destroyed stomatal closure and downregulated the salt and drought stresses marker genes' expression. We generated a soybean transient GmbZIP19 overexpression line, performed a Chromatin immunoprecipitation assay and found that GmbZIP19 bound to promoters of ABA-, JA-, ETH-, and SA-induced marker genes in soybean. The yeast one-hybrid verified the combination. The current study suggested that GmbZIP19 is a positive regulator of pathogen resistance and a negative regulator of salt and drought stress tolerance.


Subject(s)
Basic-Leucine Zipper Transcription Factors/metabolism , Glycine max/genetics , Stress, Physiological/genetics , Abscisic Acid/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Cyclopentanes/metabolism , Droughts , Gene Expression Regulation, Plant/genetics , Genes, Plant/genetics , Oxylipins/metabolism , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Salicylic Acid/metabolism , Stress, Physiological/physiology , Transcription Factors/metabolism
18.
PeerJ ; 8: e9006, 2020.
Article in English | MEDLINE | ID: mdl-32377449

ABSTRACT

BACKGROUND: Dehydration responsive element-binding (DREB) transcription factors play a crucial role in plant growth, development and stress responses. Although DREB genes have been characterized in many plant species, genome-wide identification of the DREB gene family has not yet been reported in pineapple (Ananas comosus (L.) Merr.). RESULTS: Using comprehensive genome-wide screening, we identified 20 AcoDREB genes on 14 chromosomes. These were categorized into five subgroups. AcoDREBs within a group had similar gene structures and domain compositions. Using gene structure analysis, we showed that most AcoDREB genes (75%) lacked introns, and that the promoter regions of all 20 AcoDREB genes had at least one stress response-related cis-element. We identified four genes with high expression levels and six genes with low expression levels in all analyzed tissues. We detected expression changes under abiotic stress for eight selected AcoDREB genes. CONCLUSIONS: This report presents the first genome-wide analysis of the DREB transcription factor family in pineapple. Our results provide preliminary data for future functional analysis of AcoDREB genes in pineapple, and useful information for developing new pineapple varieties with key agronomic traits such as stress tolerance.

19.
Int J Genomics ; 2020: 3165958, 2020.
Article in English | MEDLINE | ID: mdl-32455125

ABSTRACT

This study identified 57 basic leucine zipper (bZIP) genes from the pineapple genome, and the analysis of these bZIP genes was focused on the evolution and divergence after multiple duplication events in relation to the pineapple genome fusion. According to bioinformatics analysis of a phylogenetic tree, the bZIP gene family was divided into 11 subgroups in pineapple, Arabidopsis, and rice; gene structure and conserved motif analyses showed that bZIP genes within the same subgroup shared similar intron-exon organizations and motif composition. Further synteny analysis showed 17 segmental duplication events with 27 bZIP genes. The study also analyzed the pineapple gene expression of bZIP genes in different tissues, organs, and developmental stages, as well as in abiotic stress responses. The RNA-sequencing data showed that AcobZIP57 was upregulated in all tissues, including vegetative and reproductive tissues. AcobZIP28 and AcobZIP43 together with the other 25 bZIP genes did not show high expression levels in any tissue. Six bZIP genes were exposed to abiotic stress, and the relative expression levels were detected by quantitative real-time PCR. A significant response was observed for AcobZIP24 against all kinds of abiotic stresses at 24 and 48 h in pineapple root tissues. Our study provides a perspective for the evolutionary history and general biological involvement of the bZIP gene family of pineapple, which laid the foundation for future functional characterization of the bZIP genes in pineapple.

20.
Plant J ; 102(6): 1172-1186, 2020 06.
Article in English | MEDLINE | ID: mdl-31944421

ABSTRACT

Angiosperm reproductive development is a complex event that includes floral organ development, male and female gametophyte formation and interaction between the male and female reproductive organs for successful fertilization. Previous studies have revealed the redundant function of ATP binding cassette subfamily G (ABCG) transporters ABCG1 and ABCG16 in pollen development, but whether they are involved in other reproductive processes is unknown. Here we show that ABCG1 and ABCG16 were not only expressed in anthers and stamen filaments but also enriched in pistil tissues, including the stigma, style, transmitting tract and ovule. We further demonstrated that pistil-expressed ABCG1 and ABCG16 promoted rapid pollen tube growth through their effects on auxin distribution and auxin flow in the pistil. Moreover, disrupted auxin homeostasis in stamen filaments was associated with defective filament elongation. Our work reveals the key functions of ABCG1 and ABCG16 in reproductive development and provides clues for identifying ABCG1 and ABCG16 substrates in Arabidopsis.


Subject(s)
Arabidopsis Proteins/physiology , Arabidopsis/physiology , Indoleacetic Acids/metabolism , Membrane Proteins/physiology , Plant Growth Regulators/physiology , Signal Transduction , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Flowers/growth & development , Flowers/metabolism , Membrane Proteins/metabolism , Plant Growth Regulators/metabolism , Pollen Tube/growth & development , Pollen Tube/metabolism , Reproduction
SELECTION OF CITATIONS
SEARCH DETAIL
...