Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Res Int ; 2022: 9774879, 2022.
Article in English | MEDLINE | ID: mdl-35832846

ABSTRACT

Gliomas are the most common primary intracranial tumors and closely related to circadian clock. Due to the high mortality and morbidity of gliomas, exploring novel diagnostic and early prognostic markers is necessary. Circadian clock genes (CCGs) play important roles in regulating the daily oscillation of biological processes and the development of tumor. Therefore, we explored the influences that the oscillations of circadian clock genes (CCGs) on diagnosis and prognosis of gliomas using bioinformatics. In this work, we systematically analyzed the rhythmic expression of CCGs in brain and found that some CCGs had strong rhythmic expression; the expression levels were significantly different between day and night. Four CCGs (ARNTL, NPAS2, CRY2, and DBP) with rhythmic expression were not only identified as differentially expressed genes but also had significant independent prognostic ability in the overall survival of glioma patients and were highly correlated with glioma prognosis in COX analysis. Besides, we found that CCG-based predictive model demonstrated higher predictive accuracy than that of the traditional grade-based model; this new prediction model can greatly improve the accuracy of glioma prognosis. Importantly, based on the four CCGs' circadian oscillations, we revealed that patients sampled at night had higher predictive ability. This may help detect glioma as early as possible, leading to early cancer intervention. In addition, we explored the mechanism of CCGs affecting the prognosis of glioma. CCGs regulated the cell cycle, DNA damage, Wnt, mTOR, and MAPK signaling pathways. In addition, it also affects prognosis through gene coexpression and immune infiltration. Importantly, ARNTL can rhythmically modulated the cellular sensitivity to clinic drugs, temozolomide. The optimal point of temozolomide administration should be when ARNTL expression is highest, that is, the effect is better at night. In summary, our study provided a basis for optimizing clinical dosing regimens and chronotherapy for glioma. The four key CCGs can serve as potential diagnostic and prognostic biomarkers for glioma patients, and ARNTL also has obvious advantages in the direction of glioma chronotherapy.


Subject(s)
Circadian Clocks , Glioma , ARNTL Transcription Factors , Biomarkers , Chronotherapy , Circadian Clocks/genetics , Circadian Rhythm/genetics , Glioma/diagnosis , Glioma/genetics , Glioma/therapy , Humans , Prognosis , Temozolomide
2.
Front Mol Biosci ; 9: 875418, 2022.
Article in English | MEDLINE | ID: mdl-35755819

ABSTRACT

There are still frequent reports that a number of recovered coronavirus disease 2019 (COVID-19) patients following discharge have re-detectable positive (RP) results by RT-PCR. Understanding the clinical and molecular characteristics of RP patients may have implications for curbing the COVID-19 pandemic. In this study, 318 COVID-19 convalescent patients, including 59 RP patients and 259 non-RP (NRP) patients, were enrolled. Among RP patients, women accounted for a significantly high proportion (67.8%), and the titers of IgG and IgM antibodies in this group were also significantly high. Differentially expressed genes (DEGs), including 692 upregulated and 383 downregulated genes, overlapped in two public GEO datasets containing RP and NRP blood cell samples. Enrichment analysis indicated that these DEGs were related to several key signaling pathways, such as viral infection, immune activation, and inflammatory responses. Importantly, 59 indicator genes constituting the core network exhibited high diagnostic values and were correlated with markers of different immune cells. Among these, 12 drug-related genes were associated with the RP results. Our work suggests that, in addition to clinically available features, blood cell transcriptome sequencing can be performed to obtain gene signatures for diagnosis of RP patients.

3.
Biomed Res Int ; 2022: 3758731, 2022.
Article in English | MEDLINE | ID: mdl-35496042

ABSTRACT

Esophageal squamous cell carcinoma (ESCC) has a high incidence and low survival rate, necessitating the identification of novel specific biomarkers. Centromere-associated proteins (CENPs) have been reported to be biomarkers for many cancers, but their roles in ESCC have seldom been investigated. Here, the potential clinical roles of CENPs in ESCC patients were demonstrated by a systematic bioinformatics analysis. Most CENP-encoding genes were differentially expressed between tumor and normal tissues. CENPA, CENPE, CENPF, CENPI, CENPM, CENPN, CENPQ, and CENPR were upregulated universally in the three datasets. Survival analysis demonstrated that high expression of CENPE and CENPQ was positively correlated with the outcomes of ESCC patients. The CENPE-based forecast model was more accurate than the tumor-node-metastasis (TNM) staging-based model, which was classified as stage I/II vs. III/IV. More importantly, the forecast model based on the commonly upregulated CENPs exhibited a much higher area under the curve (AUC) value (0.855) than the currently known TTL, ZNF750, AC016205.1, and BOLA3 biomarkers. The nomogram model integrating the CENPs, TNM stage, and sex was highly accurate in the prognosis of ESCC patients (AUC = 0.906). Besides, gene set enrichment analysis (GSEA) demonstrated that CENPE expression is significantly correlated with cell cycle, G2/M checkpoint, mitotic spindle, p53, etc. Finally, in validation experiments, we also found that CENPE and CENPQ were significantly overexpressed in esophageal cancer cells. Taken together, these results clearly suggest that CENPs are clinically promising diagnostic and prognostic biomarkers for ESCC patients.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Centromere , Esophageal Neoplasms/diagnosis , Esophageal Neoplasms/genetics , Esophageal Neoplasms/metabolism , Esophageal Squamous Cell Carcinoma/diagnosis , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/metabolism , Humans , Mitochondrial Proteins/metabolism , Prognosis , Transcription Factors/genetics , Tumor Suppressor Proteins/genetics , Up-Regulation/genetics
4.
Int J Biol Sci ; 18(1): 276-291, 2022.
Article in English | MEDLINE | ID: mdl-34975332

ABSTRACT

Esophageal carcinoma (EC) ranks sixth among cancers in mortality worldwide and effective drugs to reduce EC incidence and mortality are lacking. To explore potential anti-esophageal cancer drugs, we conducted drug screening and discovered that verdinexor, a selective inhibitor of nuclear exportin 1 (XPO1/CRM1), has anti-esophageal cancer effects both in vivo and in vitro. However, the mechanism and role of verdinexor in esophageal cancer remain unknown. In the present study, we observed that verdinexor inhibited the proliferation and migration of EC cells in vitro and suppressed tumor growth in vivo. Additionally, we found that verdinexor induced cleavage of PARP and downregulated XPO1, c-Myc, and FOSL1 expression. RNA-sequence analysis and protein-protein interaction (PPI) analysis revealed that verdinexor regulated the XPO1/c-Myc/FOSL1 axis. The results of immunoprecipitation and proximity ligation assays confirmed that verdinexor disrupted the interaction between XPO1 and c-Myc. Overexpression of c-Myc rescued the inhibition of cell proliferation and cell migration caused by verdinexor. Overexpressed FOSL1 restored the inhibited migration by verdinexor. Taken together, verdinexor inhibited cell proliferation and migration of esophageal cancer via XPO1/c-Myc/FOSL1 axis. Our findings provide a new option for the development of anti-esophageal cancer drugs.


Subject(s)
Acrylamides/pharmacology , Cell Movement/drug effects , Cell Proliferation/drug effects , DNA-Binding Proteins/metabolism , Esophageal Neoplasms/drug therapy , Hydrazines/pharmacology , Karyopherins/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Transcription Factors/metabolism , Animals , Cell Line, Tumor , Humans , Male , Mice , Mice, Nude , Salivary alpha-Amylases/metabolism , Exportin 1 Protein
5.
Comput Math Methods Med ; 2021: 8238833, 2021.
Article in English | MEDLINE | ID: mdl-34745328

ABSTRACT

Hepatocellular carcinoma (HCC) is the leading cause of cancer-related mortality worldwide due to its asymptomatic onset and poor survival rate. This highlights the urgent need for developing novel diagnostic markers for early HCC detection. The circadian clock is important for maintaining cellular homeostasis and is tightly associated with key tumorigenesis-associated molecular events, suggesting the so-called chronotherapy. An analysis of these core circadian genes may lead to the discovery of biological markers signaling the onset of the disease. In this study, the possible functions of 13 core circadian clock genes (CCGs) in HCC were systematically analyzed with the aim of identifying ideal biomarkers and therapeutic targets. Profiles of HCC patients with clinical and gene expression data were downloaded from The Cancer Genome Atlas and International Cancer Genome Consortium. Various bioinformatics methods were used to investigate the roles of circadian clock genes in HCC tumorigenesis. We found that patients with high TIMELESS expression or low CRY2, PER1, and RORA expressions have poor survival. Besides, a prediction model consisting of these four CCGs, the tumor-node-metastasis (TNM) stage, and sex was constructed, demonstrating higher predictive accuracy than the traditional TNM-based model. In addition, pathway analysis showed that these four CCGs are involved in the cell cycle, PI3K/AKT pathway, and fatty acid metabolism. Furthermore, the network of these four CCGs-related coexpressed genes and immune infiltration was analyzed, which revealed the close association with B cells and nTreg cells. Notably, TIMELESS exhibited contrasting effects against CRY2, PER1, and RORA in most situations. In sum, our works revealed that these circadian clock genes TIMELESS, CRY2, PER1, and RORA can serve as potential diagnostic and prognostic biomarkers, as well as therapeutic targets, for HCC patients, which may promote HCC chronotherapy by rhythmically regulating drug sensitivity and key cellular signaling pathways.


Subject(s)
Carcinogenesis/genetics , Carcinoma, Hepatocellular/genetics , Circadian Clocks/genetics , Gene Regulatory Networks , Liver Neoplasms/genetics , Biomarkers, Tumor/genetics , Cell Cycle Proteins/genetics , Circadian Rhythm Signaling Peptides and Proteins/genetics , Computational Biology , Cryptochromes/genetics , Female , Gene Expression Profiling/statistics & numerical data , Gene Expression Regulation, Neoplastic , Humans , Intracellular Signaling Peptides and Proteins/genetics , Male , Middle Aged , Nuclear Receptor Subfamily 1, Group F, Member 1/genetics , Period Circadian Proteins/genetics , Prognosis
SELECTION OF CITATIONS
SEARCH DETAIL
...