Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Genomics ; 24(1): 458, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37582696

ABSTRACT

BACKGROUND: Hull colour is an important morphological marker for selection in seed production of foxtail millet. However, the molecular mechanisms underlying hull colour variation remain unknown. RESULTS: An F7 recombinant inbred line (RIL) population containing 215 lines derived from Hongjiugu × Yugu18 was used to analyze inheritance and detect the quantitative trait loci (QTL) for four hull colour traits using major gene plus polygene mixed inheritance analysis and composite interval mapping (CIM) in four environments. Genetic analysis revealed that the hull colour L* value (HCL*) was controlled by two major genes plus additive polygenes, the hull colour a* value (HCa*) was controlled by three major genes, the hull colour b* value (HCb*) was controlled by two major genes plus polygenes, and the hull colour C* value (HCC*) was controlled by four major genes. A high-density genetic linkage map covering 1227.383 cM of the foxtail millet genome, with an average interval of 0.879 cM between adjacent bin markers, was constructed using 1420 bin markers. Based on the genetic linkage map and the phenotypic data, a total of 39 QTL were detected for these four hull colour traits across four environments, each explaining 1.50%-49.20% of the phenotypic variation. Of these, six environmentally stable major QTL were co-localized to regions on chromosomes 1 and 9, playing a major role in hull colour. There were 556 annotated genes within the two QTL regions. Based on the functions of homologous genes in Arabidopsis and the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) gene annotations, five genes were predicted as candidate genes for further studies. CONCLUSIONS: This is the first study to use an inheritance model and QTL mapping to determine the genetic mechanisms of hull colour trait in foxtail millet. We identified six major environmentally stable QTL and predicted five potential candidate genes to be associated with hull colour. These results advance the current understanding of the genetic mechanisms underlying hull colour traits in foxtail millet and provide additional resources for application in genomics-assisted breeding and potential isolation and functional characterization of the candidate genes.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Setaria Plant , Quantitative Trait Loci , Chromosome Mapping/methods , Setaria Plant/genetics , Carcinoma, Hepatocellular/genetics , Color , Liver Neoplasms/genetics , Plant Breeding , Genetic Association Studies
2.
Inorg Chem ; 62(23): 9178-9189, 2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37235631

ABSTRACT

Nowadays, it is still elusive and challenging to discover the active sites of cobalt (Co) cations in different coordination structures, though Co-based oxides show their great potency in catalytic ozone elimination for air cleaning. Herein, different Co-based oxides are controllably synthesized including hexagonal wurtzite CoO-W with Co2+ in tetrahedral coordination (CoTd2+) and CoAl spinel with dominant CoTd2+, cubic rock salt CoO-R with Co2+ in octahedral coordination (CoOh2+), MgCo spinel with dominant Co3+ in octahedral coordination (CoOh3+), and Co3O4 with mixed CoTd2+ and CoOh3+. The valences are proved by X-ray photoelectron spectroscopy, and the coordinations are verified by X-ray absorption fine structure analysis. The ozone decomposition performances are CoOh3+ ∼ CoOh2+ ≫ CoTd2+, and CoOh3+ and CoOh2+ show a lower apparent activation energy of ∼42-44 kJ/mol than CoTd2+ (∼55 kJ/mol). In specific, MgCo shows the highest decomposition efficiency of 95% toward 100 ppm ozone at a high space velocity of 1,200,000 mL/gh, which still retains at 80% after a long-term running of 36 h at room temperature. The high activity is explained by the d-orbital splitting in the octahedral coordination, favoring the electron transfer in ozone decomposition reactions, which is also verified by the simulation. These results show the promising prospect of the coordination tuning of Co-based oxides for highly active ozone decomposition catalysts.

3.
Nanoscale ; 14(42): 15724-15734, 2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36194173

ABSTRACT

The regulation of oxygen vacancies and Ru species using metal-organic frameworks was synergically adopted in a rational design to upgrade Ru/TiO2 catalysts, which are highly active for the catalytic oxidation of dichloromethane (DCM) with less undesired byproducts. In this work, Ru/M-TiO2 and Ru/N-TiO2 catalysts were synthesized by the pyrolysis of MIL-125 and NH2-MIL-125 incorporated with Ru, the existence of Ru nanoclusters and nanoparticles was detected by XAFS, respectively, and the catalytic performance was analyzed comprehensively. Complete oxidation of DCM was obtained at ∼290 °C over Ru/M-TiO2 and Ru/N-TiO2 catalysts, while Ru/N-TiO2 showed quite less monochloromethane (MCM) and higher CO2 yields, and better dechlorination capacity in oxidation. The distinction comes down to that the easier desorption of chlorine could be achieved over Ru4+ which act as the main activated adsorption sites for DCM in Ru/N-TiO2, compared to oxygen vacancies that serve as the main dissociation sites in Ru/M-TiO2. Additionally, Ru/N-TiO2 exhibited superior stability and excellent resilience in moisture. An in situ DRIFTS experiment further indicated the different DCM catalytic degradation process as well as the reaction mechanism over the as-prepared catalysts.

SELECTION OF CITATIONS
SEARCH DETAIL
...