Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 15(46): 53371-53381, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37935594

ABSTRACT

Establishing an effective metal-free photocatalyst for sustainable applications remains a huge challenge. Herein, we developed ultrathin oxygen-doped g-C3N4 nanosheets with carbon defects (OCvN) photocatalyst via a facile gas bubble template-assisted thermal copolymerization method. A series of OCvN with different dopant amounts ranging from 0 to 10% were synthesized and used as photocatalysts under illumination of low-power (2 × 18 W, 0.18 mW/cm2) and commercially available energy-saving light bulbs. Upon testing for photocatalytic Escherichia coli inactivation, the best-performing sample, OCvN-3, demonstrated an astonishing disinfection activity of over 7-log reduction after 3 h of illumination, boasting an 18-fold improvement in its antibacterial activity compared to that of pristine g-C3N4. The enhanced performance was attributed to the synergistic effects of increased surface area, extended visible light harvesting, improved electronic conductivity, and ultralow resistance to charge transfer. This study successfully introduced a green photocatalyst that demonstrates the most effective disinfection performance ever recorded among metal-free g-C3N4 materials. Its disinfection capabilities are comparable to those of metal-based photocatalysts when they are exposed to low-power light.

2.
Nat Commun ; 14(1): 7676, 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-37996415

ABSTRACT

Engineering an efficient semiconductor to sustainably produce green hydrogen via solar-driven water splitting is one of the cutting-edge strategies for carbon-neutral energy ecosystem. Herein, a superhydrophilic green hollow ZnIn2S4 (gZIS) was fabricated to realize unassisted photocatalytic overall water splitting. The hollow hierarchical framework benefits exposure of intrinsically active facets and activates inert basal planes. The superhydrophilic nature of gZIS promotes intense surface water molecule interactions. The presence of vacancies within gZIS facilitates photon energy utilization and charge transfer. Systematic theoretical computations signify the defect-induced charge redistribution of gZIS enhancing water activation and reducing surface kinetic barriers. Ultimately, the gZIS could drive photocatalytic pure water splitting by retaining close-to-unity stability for a full daytime reaction with performance comparable to other complex sulfide-based materials. This work reports a self-activated, single-component cocatalyst-free gZIS with great exploration value, potentially providing a state-of-the-art design and innovative aperture for efficient solar-driven hydrogen production to achieve carbon-neutrality.

3.
ACS Omega ; 8(2): 1851-1863, 2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36687105

ABSTRACT

Switching to renewable, carbon-neutral sources of energy is urgent and critical for climate change mitigation. Despite how hydrogen production by electrolyzing water can enable renewable energy storage, current technologies unfortunately require rare and expensive platinum group metal electrocatalysts, which limit their economic viability. Transition metal dichalcogenides (TMDs) are low-cost, earth-abundant materials that possess the potential to replace platinum as the hydrogen evolution catalyst for water electrolysis, but so far, pristine TMDs are plagued by poor catalytic performances. Defect engineering is an attractive approach to enhance the catalytic efficiency of TMDs and is not subjected to the limitations of other approaches like phase engineering and surface structure engineering. In this minireview, we discuss the recent progress made in defect-engineered TMDs as efficient, robust, and low-cost catalysts for water splitting. The roles of chalcogen atomic defects in engineering TMDs for improvements to the hydrogen evolution reaction (HER) are summarized. Finally, we highlight our perspectives on the challenges and opportunities of defect engineering in TMDs for electrocatalytic water splitting. We hope to provide inspirations for designing the state-of-the-art catalysts for future breakthroughs in the electrocatalytic HER.

4.
Nanoscale ; 14(48): 18087-18093, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36448604

ABSTRACT

Heterojunction photocatalysts have shown their immense capability in enhancing photogenerated charge carrier separation. Yet, the intrinsic scarcity of active sites in semiconductor components of heterojunction photocatalysts limits their potential for photocatalysis being used in practical applications. Herein, we employ a non-noble metal cocatalyst (i.e., NiS) for modulating a S-scheme heterojunction photocatalyst consisting of Cd3(C3N3S3)2 (CdCNS) and CdS. It is revealed that the formation of the CdCNS/CdS S-scheme heterojunction can enable optimal photogenerated charge carrier utilization efficiency and optimized redox capability. More importantly, the meticulous loading of NiS can play multiple roles in enhancing the photocatalytic performance of the CdCNS/CdS photocatalyst, including endowing it with abundant surface-active sites and acting as a photogenerated electron acceptor. As a result, the optimized NiS-loaded CdCNS/CdS attains an excellent hydrogen production rate of 38.17 mmol g-1 h-1, to reach a quantum efficiency of 29.02% at 420 nm. The results reported in this work provide an interesting insight into the important roles of surface-active site modulation in optimizing photocatalytic performances.

5.
Phys Chem Chem Phys ; 24(42): 25735-25739, 2022 Nov 02.
Article in English | MEDLINE | ID: mdl-36278396

ABSTRACT

Effective photocatalytic polyethylene degradation by TiO2 is hindered by the sluggish kinetics of alkyl hydroperoxide decomposition. Introduction of oxygen vacancies onto TiO2 destabilizes the hydroperoxide O-O bond due to mid-gap states and the elevated Fermi level. Downshift of the d-band center by oxygen vacancies also enhanced adsorbate-surface interactions and lowered the activation energy barrier from Gibbs calculations. Experimental evidence additionally substantiated enhanced polyethylene degradation on TiO2-x compared to TiO2.

6.
Materials (Basel) ; 15(14)2022 Jul 14.
Article in English | MEDLINE | ID: mdl-35888364

ABSTRACT

Photocatalytic water splitting has garnered tremendous attention for its capability to produce clean and renewable H2 fuel from inexhaustible solar energy. Until now, most research has focused on scarce pure water as the source of H2, which is not consistent with the concept of sustainable energy. Hence, the importance of photocatalytic splitting of abundant seawater in alleviating the issue of pure water shortages. However, seawater contains a wide variety of ionic components which have unknown effects on photocatalytic H2 production. This work investigates photocatalytic seawater splitting conditions using environmentally friendly amorphous carbon nitride (ACN) as the photocatalyst. The individual effects of catalyst loading (X1), sacrificial reagent concentration (X2), salinity (X3), and their interactive effects were studied via the Box-Behnken design in response surface modeling towards the H2 evolution reaction (HER) from photocatalytic artificial seawater splitting. A second-order polynomial regression model is predicted from experimental data where the variance analysis of the regressions shows that the linear term (X1, X2), the two-way interaction term X1X2, and all the quadratic terms (X12, X22, X23) pose significant effects towards the response of the HER rate. Numerical optimization suggests that the highest HER rate is 7.16 µmol/h, achievable by dosing 2.55 g/L of ACN in 45.06 g sea salt/L aqueous solution containing 17.46 vol% of triethanolamine. Based on the outcome of our findings, an apparent effect of salt ions on the adsorption behavior of the photocatalyst in seawater splitting with a sacrificial reagent has been postulated.

7.
Phys Chem Chem Phys ; 24(18): 11124-11130, 2022 May 11.
Article in English | MEDLINE | ID: mdl-35474006

ABSTRACT

Surface defect engineering on the nanoscale has attracted extensive research attention lately; however, its role in modulating the properties and catalytic performance of a semiconducting material has not been comprehensively covered. Here, we systematically unraveled the effect of defect engineering towards textural, electronic and optical properties of graphitic carbon nitride (g-C3N4), as well as its photocatalytic mechanism of CO2 reduction using first-principle calculations by density functional theory through the introduction of various defect sites. Among the five unique atoms in g-C3N4, the vacancy site was found to be the most feasible at the two-coordinated nitrogen, N2. By initiating N2 point defects, an asymmetric electron density distribution was engendered around the vacancy region, which resulted in an evolution of semiconducting properties. We also discovered an improved charge separation efficiency and CO2 adsorption affinity in g-C3N4, which rendered a more thermodynamically feasible pathway for CO2 reduction to CO, CH3OH and CH4 fuels. This theoretical finding is hoped to shed light on the importance of the defect engineering strategy towards photocatalytic enhancement in g-C3N4.

8.
ChemSusChem ; 15(14): e202200471, 2022 Jul 21.
Article in English | MEDLINE | ID: mdl-35447013

ABSTRACT

Photocatalytic reduction of CO2 has attracted enormous interest as a sustainable and renewable source of energy. In the past decade, numerous bulk-type semiconductors have been developed, but the existing designs suffer many limitations, namely rapid recombination of charge carriers and weak light absorption ability. Herein, a bottom-up approach was developed to design atomically thin sulfur-doped Bi2 WO6 perovskite nanosheets (S-BWO) with improved reduction ability, extended visible light absorption, prolonged lifetime of charge carriers, enhanced adsorption of CO2 , and reduced work function. Compared with pristine Bi2 WO6 (P-BWO), S-BWO nanosheets exhibited a 3-fold improvement in photocatalytic reduction of CO2 under simulated sunlight irradiation. Experimental studies and density functional theory calculations revealed the synergistic roles of atomically thin nanosheets and S atoms in promoting photocatalytic efficiency.

9.
Sci Rep ; 12(1): 1927, 2022 Feb 04.
Article in English | MEDLINE | ID: mdl-35121781

ABSTRACT

ZnIn2S4 (ZIS) is an efficient photocatalyst for solar hydrogen (H2) generation from water splitting owing to its suitable band gap, excellent photocatalytic behaviour and high stability. Nevertheless, modifications are still necessary to further enhance the photocatalytic performance of ZIS for practical applications. This has led to our interest in exploring phosphorus doping on ZIS for photocatalytic water splitting, which has not been studied till date. Herein, phosphorus-doped ZnIn2S4 (P-ZIS) was modelled via Density Functional Theory to investigate the effects of doping phosphorus on the structural and electronics properties of ZIS as well as its performance toward photocatalytic water splitting. This work revealed that the replacement of S3 atom by substitutional phosphorus gave rise to the most stable P-ZIS structure. In addition, P-ZIS was observed to experience a reduction in band gap energy, an upshift of valence band maximum (VBM), an increase in electron density near VBM and a reduction of H* adsorption-desorption barrier, all of which are essential for the enhancement of the hydrogen evolution reaction. In overall, detailed theoretical analysis carried out in this work could provide critical insights towards the development of P-ZIS-based photocatalysts for efficient H2 generation via solar water splitting.

10.
Environ Sci Pollut Res Int ; 29(27): 41272-41292, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35088270

ABSTRACT

Dye wastewater has raised a prevalent environmental concern due to its ability to prevent the penetration of sunlight through water, thereby causing a disruption to the aquatic ecosystem. Carbon quantum dots (CQDs) are particularly sought after for their highly tailorable photoelectrochemical and optical properties. Simultaneously, graphitic carbon nitride (g-C3N4) has gained widespread attention due to its suitable band gap energy as well as excellent chemical and thermal stabilities. Herein, a novel boron-doped CQD (BCQD)-hybridized g-C3N4 homojunction (CN) nanocomposite was fabricated via a facile hydrothermal route. The optimal photocatalyst sample, 1-BCQD/CN (with a 1:3 mass ratio of boron to CQD) accomplished a Rhodamine B (RhB, 10 mg/L) degradation efficiency of 96.8% within 4 h under an 18 W LED light irradiation. The kinetic rate constant of 1.39 × 10-2 min-1 achieved by the optimum sample was found to be 3.6- and 2.8-folds higher than that of pristine CN and un-doped CQD/CN, respectively. The surface morphology, crystalline structure, chemical composition and optical properties of photocatalyst samples were characterized via TEM, FESEM-EDX, XRD, FTIR, UV-Vis DRS and FL spectrometer. Based on the scavenging tests, it was revealed that the photogenerated holes (h+), superoxide anions (∙O2-) and hydroxyl radicals (∙OH) were the primary reactive species responsible for the photodegradation process. Overall, the highly efficient 1-BCQD/CN composite with excellent photocatalytic activity could provide a cost-effective and robust means to address the increasing concerns over global environmental pollution.


Subject(s)
Quantum Dots , Boron , Carbon , Catalysis , Ecosystem
11.
Chem Rev ; 122(3): 3879-3965, 2022 02 09.
Article in English | MEDLINE | ID: mdl-34968051

ABSTRACT

Photocatalysis is a perennial solution that promises to resolve deep-rooted challenges related to environmental pollution and energy deficit through harvesting the inexhaustible and renewable solar energy. To date, a cornucopia of photocatalytic materials has been investigated with the research wave presently steered by the development of novel, affordable, and effective metal-free semiconductors with fascinating physicochemical and semiconducting characteristics. Coincidentally, the recently emerged red phosphorus (RP) semiconductor finds itself fitting perfectly into this category ascribed to its earth abundant, low-cost, and metal-free nature. More notably, the renowned red allotrope of the phosphorus family is spectacularly bestowed with strengthened optical absorption features, propitious electronic band configuration, and ease of functionalization and modification as well as high stability. Comprehensively detailing RP's roles and implications in photocatalysis, this review article will first include information on different RP allotropes and their chemical structures, followed by the meticulous scrutiny of their physicochemical and semiconducting properties such as electronic band structure, optical absorption features, and charge carrier dynamics. Besides that, state-of-the-art synthesis strategies for developing various RP allotropes and RP-based photocatalytic systems will also be outlined. In addition, modification or functionalization of RP with other semiconductors for promoting effective photocatalytic applications will be discussed to assess its versatility and feasibility as a high-performing photocatalytic system. Lastly, the challenges facing RP photocatalysts and future research directions will be included to propel the feasible development of RP-based systems with considerably augmented photocatalytic efficiency. This review article aspires to facilitate the rational development of multifunctional RP-based photocatalytic systems by widening the cognizance of rational engineering as well as to fine-tune the electronic, optical, and charge carrier properties of RP.


Subject(s)
Environmental Restoration and Remediation , Solar Energy , Catalysis , Phosphorus , Semiconductors
12.
Nanomaterials (Basel) ; 11(11)2021 Nov 08.
Article in English | MEDLINE | ID: mdl-34835761

ABSTRACT

This study, for the first time, focused on the fabrication of nonporous polyurea thin films (~200 microns) using the electrospinning method as a novel approach for coating applications. Multi-walled carbon nanotubes (MWCNTs) and hydrophilic-fumed nanosilica (HFNS) were added separately into electrospun polyurea films as nano-reinforcing fillers for the enhancement of properties. Neat polyurea films demonstrated a tensile strength of 14 MPa with an elongation of 360%. At a loading of 0.2% of MWCNTs, the highest tensile strength of 21 MPa and elongation of 402% were obtained, while the water contact angle remained almost unchanged (89°). Surface morphology analysis indicated that the production of polyurea fibers during electrospinning bonded together upon curing, leading to a nonporous film. Neat polyurea exhibited high thermal resistance with a degradation temperature of 380 °C. Upon reinforcement with 0.2% of MWCNTs and 0.4% of HFNS, it increased by ~7 °C. The storage modulus increased by 42 MPa with the addition of 0.2% of MWCNTs, implying a superior viscoelasticity of polyurea nanocomposite films. The results were benchmarked with anti-corrosive polymer coatings from the literature, revealing that the production of nonporous polyurea coatings with robust strength, elasticity, and thermal properties was achieved. Electrospun polyurea coatings are promising candidates as flexible anti-corrosive coatings for heat exchanges and electrical wires.

13.
Nanoscale ; 13(15): 7011-7033, 2021 Apr 21.
Article in English | MEDLINE | ID: mdl-33889914

ABSTRACT

As an indispensable energy source, ammonia plays an essential role in agriculture and various industries. Given that the current ammonia production is still dominated by the energy-intensive and high carbon footprint Haber-Bosch process, photocatalytic nitrogen fixation represents a low-energy consuming and sustainable approach to generate ammonia. Heterostructured photocatalysts are hybrid materials composed of semiconductor materials containing interfaces that make full use of the unique superiorities of the constituents and synergistic effects between them. These promising photocatalysts have superior performances and substantial potential in photocatalytic reduction of nitrogen. In this review, a wide spectrum of recently developed heterostructured photocatalysts for nitrogen fixation to ammonia are evaluated. The fundamentals of solar-to-ammonia conversion, basic principles of various heterojunction photocatalysts and modification strategies are systematically reviewed. Finally, a brief summary and perspectives on the ongoing challenges and directions for future development of nitrogen photofixation catalysts are also provided.

14.
Angew Chem Int Ed Engl ; 60(15): 8455-8459, 2021 Apr 06.
Article in English | MEDLINE | ID: mdl-33368920

ABSTRACT

Improving the stability of cuprous oxide (Cu2 O) is imperative to its practical applications in artificial photosynthesis. In this work, Cu2 O nanowires are encapsulated by metal-organic frameworks (MOFs) of Cu3 (BTC)2 (BTC=1,3,5-benzene tricarboxylate) using a surfactant-free method. Such MOFs not only suppress the water vapor-induced corrosion of Cu2 O but also facilitate charge separation and CO2 uptake, thus resulting in a nanocomposite representing 1.9 times improved activity and stability for selective photocatalytic CO2 reduction into CH4 under mild reaction conditions. Furthermore, direct transfer of photogenerated electrons from the conduction band of Cu2 O to the LUMO level of non-excited Cu3 (BTC)2 has been evidenced by time-resolved photoluminescence. This work proposes an effective strategy for CO2 conversion by a synergy of charge separation and CO2 adsorption, leading to the enhanced photocatalytic reaction when MOFs are integrated with metal oxide photocatalyst.

15.
Environ Sci Pollut Res Int ; 28(4): 4388-4403, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32940840

ABSTRACT

Graphitic carbon nitride (g-C3N4) has been regarded as a promising visible light-driven photocatalyst ascribable to its tailorable structures, thermal stability and chemical inertness. Enhanced photocatalytic activity is achievable by the construction of homojunction nanocomposites to reduce the undesired recombination of photogenerated charge carriers. In the present work, a novel g-C3N4/g-C3N4 metal-free homojunction photocatalyst was synthesized via hydrothermal polymerization. The g-C3N4/g-C3N4 derived from urea and thiourea demonstrated admirable photocatalytic activity towards rhodamine B (RhB) degradation upon irradiation of an 18 W LED light. The viability of the photoreaction with a low-powered excitation source highlighted the economic and environmental benefits of the process. The optimal g-C3N4/g-C3N4 homojunction photocatalyst exhibited a 2- and 1.8-fold increase in efficiency in relative to pristine g-C3N4 derived from urea and thiourea respectively. The enhanced photocatalytic performance is credited to the improved interfacial transfer and separation of electron-hole pairs across the homojunction interface. Furthermore, an excellent photochemical stability and durability is displayed by g-C3N4/g-C3N4 after three consecutive cycles. In addition, a plausible photocatalytic mechanism was proposed based on various scavenging tests. Overall, experimental results generated from this study is expected to intrigue novel research inspirations in developing metal-free homojunction photocatalysts to be feasible for large-scale wastewater treatment without compromising economically. Graphical abstract.


Subject(s)
Environmental Restoration and Remediation , Graphite , Catalysis , Nitrogen Compounds
16.
Chemistry ; 27(9): 3085-3090, 2021 Feb 10.
Article in English | MEDLINE | ID: mdl-33263935

ABSTRACT

Universal access to clean water has been a global ambition over the years. Photocatalytic water disinfection through advanced oxidation processes has been regarded as one of the promising methods for breaking down microbials. The forefront of this research focuses on the application of metal-free photocatalysts for disinfection to prevent secondary pollution. Graphitic carbon nitride (g-C3 N4 ) has achieved instant attention as a metal-free and visible-light-responsive photocatalyst for various energy and environmental applications. However, the photocatalytic efficiency of g-C3 N4 is still affected by its rapid charge recombination and sluggish electron-transfer kinetics. In this contribution, two-dimensionally protonated g-C3 N4 was employed as metal-free photocatalyst for water treatment and demonstrated 100 % of Escherichia coli within 4 h under irradiation with a 23 W light bulb. The introduction of protonation can modulate the surface charge of g-C3 N4 ; this enhances its conductivity and provides a "highway" for the delocalization of electrons. This work highlights the potential of conjugated polymers in antibacterial application.


Subject(s)
Disinfection/methods , Escherichia coli/chemistry , Escherichia coli/radiation effects , Graphite/chemistry , Graphite/radiation effects , Light , Microbial Viability/radiation effects , Nitrogen Compounds/chemistry , Nitrogen Compounds/radiation effects , Protons , Catalysis/radiation effects , Electrons , Graphite/pharmacology , Microbial Viability/drug effects , Nitrogen Compounds/pharmacology , Photochemistry
17.
ACS Appl Mater Interfaces ; 12(24): 26991-27000, 2020 Jun 17.
Article in English | MEDLINE | ID: mdl-32433865

ABSTRACT

The photocatalytic conversion of CO2 to energy-rich CH4 solar fuel is an ideal strategy for future energy generation as it can resolve global warming and the imminent energy crisis concurrently. However, the efficiency of this technology is unavoidably hampered by the ineffective generation and utilization of photoinduced charge carriers. In this contribution, we report a facile in situ topotactic transformation approach where {001}-faceted BiOBr nanosheets (BOB-NS) were employed as the starting material for the formation of single-crystalline ultrathin Bi2WO6 nanosheets (BWO-NS). The as-obtained BWO-NS not only preserved the advantageous properties of the 2D nanostructure and predominantly exposed {001} facets but also possessed enlarged specific surface areas as a result of sample thickness reduction. As opposed to the commonly observed bandgap broadening when the particle sizes decrease to an ultrathin nanoscale owing to the quantum size effect, the developed BWO-NS exhibited a fascinating bandgap narrowing compared to those of pristine Bi2WO6 nanoplates (BWO-P) synthesized from a conventional one-step hydrothermal approach. Moreover, the electronic band positions of BWO-NS were modulated as a result of ion exchange for the reconstruction of the energy bands, where BWO-NS demonstrated significant upshifting of CB and VB levels; these are beneficial for photocatalytic reduction applications. This propitious design of BWO-NS through integrating the merits of BOB-NS caused BWO-NS to exhibit substantial 2.6 and 9.3-fold enhancements of CH4 production over BOB-NS and BWO-P, respectively.

18.
Adv Sci (Weinh) ; 7(7): 1903171, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32274312

ABSTRACT

As the world decides on the next giant step for the renewable energy revolution, scientists have begun to reinforce their headlong dives into the exploitation of solar energy. Hitherto, numerous attempts are made to imitate the natural photosynthesis of plants by converting solar energy into chemical fuels which resembles the "Z-scheme" process. A recreation of this system is witnessed in artificial Z-scheme photocatalytic water splitting to generate hydrogen (H2). This work outlines the recent significant implication of the Z-scheme system in photocatalytic water splitting, particularly in the role of electron mediator and the key factors that improve the photocatalytic performance. The Review begins with the fundamental rationales in Z-scheme water splitting, followed by a survey on the development roadmap of three different generations of Z-scheme system: 1) PS-A/D-PS (first generation), 2) PS-C-PS (second generation), and 3) PS-PS (third generation). Focus is also placed on the scaling up of the "leaf-to-tree" challenge of Z-scheme water splitting system, which is also known as Z-scheme photocatalyst sheet. A detailed investigation of the Z-scheme system for achieving H2 evolution from past to present accompanied with in-depth discussion on the key challenges in the area of Z-scheme photocatalytic water splitting are provided.

19.
J Environ Manage ; 255: 109936, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-32063312

ABSTRACT

Growing concerns of water pollution by dye pollutants from the textile industry has led to vast research interest to find green solutions to address this issue. In recent years, heterogeneous photocatalysis has harvested tremendous attention from researchers due to its powerful potential applications in tackling many important energy and environmental challenges at a global level. To fully utilise the broad spectrum of solar energy has been a common aim in the photocatalyst industry. This study focuses on the development of an efficient, highly thermal and chemical stable, environmentally friendly and metal-free graphitic carbon nitride (g-C3N4) to overcome the problem of fast charge recombination which hinders photocatalytic performances. Nitrogen-doped carbon quantum dots (NCQDs) known for its high electronic and optical functionality properties is believed to achieve photocatalytic enhancement by efficient charge separation through forming heterogeneous interfaces. Hence, the current work focuses on the hybridisation of NCQDs and g-C3N4 to produce a composite photocatalyst for methylene blue (MB) degradation under LED light irradiation. The optimal hybridisation method and the mass loading required for maximum attainable MB degradation were systematically investigated. The optimum photocatalyst, 1 wt% NCQD/g-C3N4 composite was shown to exhibit a 2.6-fold increase in photocatalytic activity over bare g-C3N4. Moreover, the optimum sample displayed excellent stability and durability after three consecutive degradation cycles, retaining 91.2% of its original efficiency. Scavenging tests were also performed where reactive species, photon-hole (h+) was identified as the primary active species initiating the pollutant degradation mechanism. The findings of this study successfully shed light on the hybridisation methods of NCQDs which improve existing g-C3N4 photocatalyst systems for environmental remediation by utilising solar energy.


Subject(s)
Environmental Restoration and Remediation , Quantum Dots , Carbon , Catalysis , Graphite , Nitrogen , Nitrogen Compounds
20.
Chem Commun (Camb) ; 55(44): 6265-6268, 2019 May 28.
Article in English | MEDLINE | ID: mdl-31086906

ABSTRACT

The engineering of surface oxygen vacancies (OVs) in WO3 was primitively done using a facile solvothermal method. The photocatalytic activities of the as-prepared samples were studied by evaluating their performances in the photocatalytic OER. The best sample (W-3) yielded 57.6 µmol of O2 in 6 h under the illumination of simulated sunlight.

SELECTION OF CITATIONS
SEARCH DETAIL
...