Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
J Biochem Mol Toxicol ; 38(2): e23659, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38348706

ABSTRACT

Circ_0081069 plays a key role in tumor growth; however, its effect on radiosensitivity in esophageal squamous cell carcinoma (ESCC) remains unknown. The study is performed to reveal the association of circ_0081069 expression and radiosensitivity in ESCC and the underlying mechanism. Circ_0081069, miR-195-5p, and spindlin 1 (SPIN1) RNA expression were detected by quantitative real-time polymerase chain reaction. Protein expression was checked by Western blot analysis or immunohistochemistry assay. Cell viability, proliferation, cell apoptosis, migration, and invasion were investigated by cell counting kit-8, 5-Ethynyl-29-deoxyuridine, flow cytometry analysis, scratch test, and transwell assays, respectively. The sensitivity of ESCC cells to radiation was investigated by cell colony formation assay. The interactions among circ_0081069, miR-195-5p, and SPIN1 were identified by dual-luciferase reporter assay and RNA Immunoprecipitation assay. Xenograft mouse model assay was performed to determine the effect of circ_0007841 on radiosensitivity in vivo. Circ_0081069 and SPIN1 expression were upregulated, whereas miR-195-5p was downregulated in ESCC tissues, ESCC cells, and radiation-stimulated ESCC cells. Circ_0081069 silencing inhibited ESCC cell proliferation, invasion, and migration but improved cell apoptosis. In addition, circ_0081069 knockdown enhanced ESCC cell radiosensitivity in vitro and in vivo. Circ_0081069 bound to miR-195-5p and regulated radiosensitivity by binding to miR-195-5p in ESCC cells. Moreover, SPIN1, a target of miR-195-5p, rescued miR-195-5p-mediated effects in ESCC cells. Circ_0081069 was secreted from ESCC cells by being packaged into exosomes. Further, circ_0081069-Exo inhibited radiosensitivity in ESCC cells. Exosome-mediated transfer of circ_0081069 induced SPIN1 production by binding to miR-195-5p, further inhibiting radiosensitivity in ESCC.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Exosomes , MicroRNAs , Humans , Animals , Mice , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/radiotherapy , Esophageal Neoplasms/genetics , Esophageal Neoplasms/radiotherapy , Biological Transport , Disease Models, Animal , MicroRNAs/genetics , Cell Proliferation , Cell Line, Tumor
2.
3 Biotech ; 14(1): 7, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38074292

ABSTRACT

With the rapid growth of the fruit industry worldwide, it is important to assess adulteration to ensure the authenticity and the safety of fruit products. The DNA barcoding approach offers a quick and accurate way of identifying and authenticating species. In this study, we developed reference DNA barcodes (rbcL, ITS2, and trnH-psbA) for 70 cultivated and wild tropical fruit species, representing 43 genera and 26 families. In terms of species recoverability, rbcL has a greater recoverability (100%) than ITS2 (95.7%) and trnH-psbA (88.6%). We evaluated the performance of these barcodes in species discrimination using similarity BLAST, phylogenetic tree, and barcoding gap analyses. The efficiency of rbcL, ITS2, and trnH-psbA in discriminating species was 80%, 100%, and 93.6%, respectively. We employed a multigene-tiered approach for species identification, with the rbcL region used for primary differentiation and ITS2 or trnH-psbA used for secondary differentiation. The two-locus barcodes rbcL + ITS2 and rbcL + trnH-psbA demonstrated robustness, achieving species discrimination rates of 100% and 94.3% respectively. Beyond the conventional species identification method based on plant morphology, the developed reference barcodes will aid the fruit agroindustry and trade, by making fruit-based product authentication possible. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03848-w.

3.
Front Pharmacol ; 14: 1234973, 2023.
Article in English | MEDLINE | ID: mdl-37954854

ABSTRACT

PARP was an enzyme found in the nucleus of eukaryotic cells that played a crucial role in repairing damaged DNA. Recently, PARP inhibitors have demonstrated great potential in cancer treatment. Thus, the FDA has approved several small-molecule PARP inhibitors for cancer maintenance therapy. The combination of PARP inhibitors and radiotherapy relies on synthetic lethality, taking advantage of the flaws in DNA repair pathways to target cancer cells specifically. Studies conducted prior to clinical trials have suggested that the combination of PARP inhibitors and radiotherapy can enhance the sensitivity of cancer cells to radiation, intensify DNA damage, and trigger cell death. Combining radiotherapy with PARP inhibitors in clinical trials has enhanced the response rate and progression-free survival of diverse cancer patients. The theoretical foundation of PARP inhibitors combined with radiotherapy is explained in detail in this article, and the latest advances in preclinical and clinical research on these inhibitors for tumor radiotherapy are summarized. The problems in the current field are recognized in our research and potential therapeutic applications for tumors are suggested. Nevertheless, certain obstacles need to be tackled when implementing PARP inhibitors and radiotherapies in clinical settings. Factors to consider when using the combination therapy are the most suitable schedule and amount of medication, identifying advantageous candidates, and the probable adverse effects linked with the combination. The combination of radiotherapy and PARP inhibitors can greatly enhance the effectiveness of cancer treatment.

4.
J Bioenerg Biomembr ; 55(5): 381-396, 2023 10.
Article in English | MEDLINE | ID: mdl-37743442

ABSTRACT

Noncoding RNAs are key regulators in the Warburg Effect, an emerging hallmark of cancer. We intended to investigate the role and mechanism of circular RNA hsa_circ_0052611 (circ_0052611) and microRNA (miR)-767-5p in breast cancer (BRCA) hallmarks, especially the Warburg Effect. Expression of circ_0052611 and SCAI was downregulated, and miR-767-5p was upregulated in human BRCA tissues and cells; moreover, circ_0052611 acted as a miR-767-5p sponge to modulate the expression of miR-767-5p-targeted SCAI. Functionally, re-expressing circ_0052611 suppressed migration, invasion, glucose uptake, lactate production, and extracellular acidification rate (ECAR) in BRCA cells, and promoted apoptotic rate. These effects were accompanied by decreased Vimentin, N-cadherin, Bcl-2, and LDHA, and increased E-cadherin and Bax. Consistently, exhausting miR-767-5p exerted similar effects in BRCA cells. High miR-767-5p could counteract the role of circ_0052611 overexpression, and low SCAI likewise blocked the role of miR-767-5p deletion. In vivo, upregulating circ_0052611 delayed tumor growth of BRCA cells by altering miR-767-5p and SCAI expression. circ_0052611/miR-767-5p/SCAI axis might boycott the malignancy of BRCA cells.


Subject(s)
Cadherins , MicroRNAs , Humans , Biological Transport , Cell Line, Tumor , Cell Proliferation , Lactic Acid , MicroRNAs/genetics , RNA, Circular/genetics
5.
J Biochem Mol Toxicol ; 37(8): e23383, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37158446

ABSTRACT

Circular RNA (circRNA) regulates malignant tumors, including ovarian cancer (OC). The present research study aimed to reveal the biological mechanism of circRNA mitofusin 2 (circMFN2) in OC. Cell biological behaviors were investigated using clonogenicity assay, EdU assay, transwell assay, and flow cytometry analysis. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blot analysis were implemented to detect the levels of circMFN2, miR-198, Cullin 4B (CUL4B), and apoptosis-related proteins. Glycolysis was assessed by glucose assay kit, lactate assay kit, and ATP level detection kit. The relationships among miR-198, circMFN2, and CUL4B were verified by dual-luciferase reporter assay and RNA immunoprecipitation assay. The xenograft mice model was used to analyze tumor growth in vivo. The expression of circMFN2 and CUL4B was increased, while miR-330-5p was decreased in OC tissues or cells. The absence of CircMFN2 hindered cell proliferation, migration, invasion, and glycolysis and promoted apoptosis in OC cells. We found that circMFN2 promoted CUL4B expression via sponging miR-198. MiR-198 depletion reversed circMFN2 knockdown-induced effects in OC cells. Furthermore, CUL4B overexpression overturned the inhibitory effect of miR-198 in OC cells. And the absence of circMFN2 inhibited tumor growth in vivo. CircMFN2 repressed OC progression by regulating the miR-198/CUL4B axis.


Subject(s)
MicroRNAs , Ovarian Neoplasms , Humans , Animals , Mice , Female , RNA, Circular/genetics , Ovarian Neoplasms/genetics , Glycolysis , Cell Proliferation , Disease Models, Animal , Lactic Acid , MicroRNAs/genetics , Cell Line, Tumor , Cullin Proteins/genetics
6.
J Sci Food Agric ; 103(5): 2273-2282, 2023 Mar 30.
Article in English | MEDLINE | ID: mdl-36620949

ABSTRACT

BACKGROUND: Harpadon nehereus is a high-protein marine fish. A valuable way to add value to H. nehereus is to convert it into protein hydrolysate. The Maillard reaction is an effective way to improve the functional properties of peptides and proteins, which are affected by many factors such as reactant concentration, water activity, pH, temperature, and heating time. However, the traditional Maillard reaction method is inefficient. The purpose of this study was therefore to explore the effect of the ultrasound-assisted wet heating method on the Maillard reaction of H. nehereus protein hydrolysate (HNPH) in a new-type green solvent - a natural hypereutectic solvent (NADES). RESULTS: Harpadon nehereus protein hydrolysate-xylose (Xy) conjugates were prepared via a Maillard reaction in a NADES system using an ultrasound-assisted wet heating method. The effects of different treatment conditions on the Maillard reaction were studied. The optimized glycation degree (DG) of HNPH-Xy conjugates was obtained with a water content of 10%, a reaction temperature of 80 °C, a reaction time of 35 min, and an ultrasonic power level of 300 W. Compared with HNPH, the structure of HNPH-Xy conjugates were significantly changed. Moreover, the functional properties and antioxidant activity of HNPH-Xy were all superior to the HNPH. CONCLUSIONS: An ultrasound-assisted wet-heating Maillard reaction between HNPH and Xy in the NADES system could be a promising way to improve the functional properties of HNPH. © 2023 Society of Chemical Industry.


Subject(s)
Antioxidants , Maillard Reaction , Animals , Antioxidants/chemistry , Deep Eutectic Solvents , Protein Hydrolysates/chemistry , Xylose/chemistry , Heating , Solvents/chemistry , Water
7.
Ultrason Sonochem ; 92: 106229, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36459902

ABSTRACT

Lipid oxidation will lead to the deterioration of flavor, color and texture of aquatic products with high fatty acid content. The mechanism of ultrasound (US) combined with rosmarinic acid (RA) on lipid oxidation and endogenous enzyme activities of large yellow croaker during cold-storage (4 ℃) was investigated. The result showed that the US and RA have synergistic effects in delaying lipid oxidation and inhibiting endogenous lipase and lipoxygenase (LOX) activities related to oxidation. The inhibition of LOX activity by RA was dose-dependent, and US showed a negative effect on the inhibition of enzyme activity in the presence of low concentration RA. Moreover, RA changes the enzyme structure through static fluorescence quenching and interaction with enzyme molecules. Hydrogen bonding and hydrophobic interaction are the main interaction forces between RA and LOX. This study could provide basic mechanism of US treatment cooperating with polyphenols to inhibit lipid oxidation during food preservation.


Subject(s)
Lipoxygenase , Perciformes , Animals , Lipoxygenase/chemistry , Ultrasonics , Fatty Acids , Rosmarinic Acid
8.
Food Chem ; 407: 135133, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36493492

ABSTRACT

The binding mechanism between tea polyphenols and sturgeon myofibrillar protein (SMP) in the early stage (0, 2, 4 min), middle stage (6, 10 min) and late stage (15 min) of low temperature vacuum heating (LTVH) in an in vitro anti-glycation model was investigated. The result indicated that the protein cross-linking during LTVH treatment were mainly induced by tea polyphenols. The loss rate of free arginine (Arg) and free lysine (Lys) of SMP at the late stage of LTVH treatment (15 min) was 73.95 % and 83.16 %, respectively. The hydrophobic force and disulfide bond were the main force between tea polyphenols and SMP in the middle and late stage of LTVH treatment. The benzene ring and phenolic hydroxyl group of tea polyphenols can interact with the amino acid residues of SMP, which was exothermic and entropy-increasing. This study provides new insights in the interaction mechanisms between tea polyphenols-protein during heat treatment process.


Subject(s)
Polyphenols , Tea , Polyphenols/pharmacology , Polyphenols/chemistry , Tea/chemistry , Vacuum , Heating , Temperature
9.
J Food Biochem ; 46(10): e14298, 2022 10.
Article in English | MEDLINE | ID: mdl-35780305

ABSTRACT

This study aims to analyze the flavor differences of freeze-dried sea cucumber powder, processed for different time intervals, under vibration mill-assisted complex enzyme hydrolysis using electronic nose (E-nose) and gas chromatography-ion mobility spectrometry (GC-IMS). The results of principal component analysis by E-nose showed distinction among the four groups of freeze-dried sea cucumber powder (papain-neutral protease (PN) and flavorzyme-neutral protease (FN), processed for 60 and 80 min). The GC-IMS revealed 35 volatile compounds. Subsequently, based on the fingerprint and heat map results, the flavor differences among the samples were clearly distinguished. When compared to the other three groups, the 60-FN group exhibited a greater variety and quantity of volatile compounds such as octanal, heptanal, hexanal, (E, Z)-2,6-nonadienal, and nonanal. The 80-PN group exhibited high amounts of 2-propanone, ethylbenzene, ethyl acetate, and 2,5-dimethylpyrazine. In addition, the vibration mill technique was considered to be a mild enzyme-assisted method. PRACTICAL APPLICATIONS: This study found that different enzyme types and physical technology operation time can affect the different volatile flavor compounds of freeze-dried sea cucumber powder, which can be quickly and effectively be identified by E-nose and GC-IMS technology to improve the flavor and quality of the product, while facilitating the rapid adjustment and development of the industry. Meanwhile, the results of the study could provide a reference for the deep processing and flavor improvement of the sea cucumber industry and make an important contribution to the related literature. In addition, this could also promote the development and application of non-thermal processing technologies such as vibratory mill in the freeze-dried sea cucumber powder industry.


Subject(s)
Sea Cucumbers , Volatile Organic Compounds , Animals , Gas Chromatography-Mass Spectrometry/methods , Hydrolysis , Papain , Powders , Vibration , Volatile Organic Compounds/chemistry
10.
Sci Rep ; 12(1): 9546, 2022 06 09.
Article in English | MEDLINE | ID: mdl-35680966

ABSTRACT

International timber trade communities are increasingly demanding that timber in the wood supply chain be sourced from sustainably harvested forests and certified plantations. This is to combat illegal logging activities to prevent further depletion of our precious forests worldwide. Hence, timber tracking tools are important to support law enforcement officials in ensuring only sustainably harvested timbers are traded in the market. In this study, we developed chloroplast DNA (cpDNA) and simple sequence repeat (SSR) databases as tracking tools for an important tropical timber tree species, Shorea leprosula from Peninsular Malaysia. A total of 1410 individual trees were sampled from 44 natural populations throughout Peninsular Malaysia. Four cpDNA regions were used to generate a cpDNA haplotype database, resulting in a haplotype map comprising 22 unique haplotypes derived from 28 informative intraspecific variable sites. This cpDNA database can be used to trace the origin of an unknown log at the regional level. Ten SSR loci were used to develop the SSR allele frequency database. Bayesian cluster analysis divided the 44 populations into two genetic clusters corresponding to Region A and Region B. Based on conservativeness evaluation of the SSR databases for individual identification, the coancestry coefficients (θ) were adjusted to 0.1900 and 0.1500 for Region A and B, respectively. These databases are useful tools to complement existing timber tracking systems in ensuring only legally sourced timbers are allowed to enter the wood supply chain.


Subject(s)
Dipterocarpaceae , Bayes Theorem , DNA, Chloroplast/genetics , Databases, Nucleic Acid , Dipterocarpaceae/genetics , Microsatellite Repeats/genetics
11.
Nat Commun ; 13(1): 2368, 2022 May 02.
Article in English | MEDLINE | ID: mdl-35501315

ABSTRACT

High-performance quantum memory for quantized states of light is a prerequisite building block of quantum information technology. Despite great progresses of optical quantum memories based on interactions of light and atoms, physical features of these memories still cannot satisfy requirements for applications in practical quantum information systems, since all of them suffer from trade-off between memory efficiency and excess noise. Here, we report a high-performance cavity-enhanced electromagnetically-induced-transparency memory with warm atomic cell in which a scheme of optimizing the spatial and temporal modes based on the time-reversal approach is applied. The memory efficiency up to 67 ± 1% is directly measured and a noise level close to quantum noise limit is simultaneously reached. It has been experimentally demonstrated that the average fidelities for a set of input coherent states with different phases and amplitudes within a Gaussian distribution have exceeded the classical benchmark fidelities. Thus the realized quantum memory platform has been capable of preserving quantized optical states, and is ready to be applied in quantum information systems, such as distributed quantum logic gates and quantum-enhanced atomic magnetometry.

12.
Opt Express ; 30(4): 6388-6396, 2022 Feb 14.
Article in English | MEDLINE | ID: mdl-35209578

ABSTRACT

Quantum network plays a vitally important role in the practical application of quantum information, which requires the deterministic entanglement distribution among multiple remote users. Here, we propose a feasible scheme to deterministically distribute quadripartite entanglement by continuous-variable (CV) polarization states. The quantum server prepares the quadripartite CV polarization entanglement and distributes them to four remote users via optical fiber. In this way, the measurement of CV polarization entanglement is local oscillation free, which makes the long distance entanglement distribution in commercial optical fiber communication networks possible. Furthermore, both the Greenberger-Horne-Zeilinger-like (GHZ-like) and cluster-like polarization entangled states can be distributed among four users by controlling the beam splitter network in quantum server, which are confirmed by the extended criteria for polarization entanglement of multipartite optical modes. The protocol provides the direct reference for experimental implementation and can be directly extended to quantum network with more users, which is essential for a metropolitan quantum network.

13.
Forensic Sci Int Genet ; 57: 102658, 2022 03.
Article in English | MEDLINE | ID: mdl-34998185

ABSTRACT

Aquilaria malaccensis (Thymelaeaceae) is the main source of high-grade agarwood in Southeast Asia. Aggressive collections and trade activities over the past decades have put great pressure on the natural stands and raised concerns over the long-term survival potential of A. malaccensis. Tracking and authentication of agarwood require method with a high degree of accuracy. Therefore, this study aimed to develop DNA databases of A. malaccensis as the tracking tools at species, population and individual levels for forensic identification and chain of custody certification. Using two cpDNA (rbcL and matK) and an rDNA (ITS2) markers, species identification database of Aquilaria was developed to distinguish A. malaccensis from A. hirta, A. microcarpa, A. beccariana, A. crassna, A. sinensis and A. rostrata. In addition, based on 35 populations of A. malaccensis throughout Peninsular Malaysia, cpDNA haplotype and STR allele frequency databases were developed for population and individual identification. A haplotype distribution map based on 29 haplotypes derived from seven cpDNA showed that the A. malaccensis in Peninsular Malaysia can be associated to Kedah-Perak and Kelantan-Johor regions. Similarly, genetic relatedness and Bayesian clustering analyses based on 10 STR markers also divided the 35 populations into two main genetic clusters, corresponding to Kedah-Perak and Kelantan-Johor regions. The STR allele frequency databases were established and characterized according to these two regions. To determine the performance of the STR allele frequency databases for population identification, independent self-assignment tests showed that the percentage of individuals correctly assigned into the origin population was 93.88% in Kedah-Perak and 90.29% in Kelantan-Johor. For the STR allele frequency databases to be used for individual identification, conservativeness tests showed that the θ should be adjusted to 0.250 and 0.200 in the Kedah-Perak and Kelantan-Johor databases, respectively. To ensure consistency in allele calling for the dinucleotide repeat loci across different electrophoretic platforms or laboratories, allelic ladders have been developed for the 10 STR loci. Two case studies are presented of how these databases were used to track A. malaccensis to the origin population and stump. These databases are ready to be used to provide admissible forensic evidence for legal proceedings against the illegal harvesters of agarwood and for agarwood certification to meet the consumer country regulations.


Subject(s)
Thymelaeaceae , Bayes Theorem , Certification , DNA, Chloroplast/genetics , Databases, Nucleic Acid , Humans , Thymelaeaceae/genetics
14.
Conserv Biol ; 36(3): e13873, 2022 06.
Article in English | MEDLINE | ID: mdl-34865262

ABSTRACT

Tree diversity in Asia's tropical and subtropical forests is central to nature-based solutions. Species vulnerability to multiple threats, which affect provision of ecosystem services, is poorly understood. We conducted a region-wide, spatially explicit assessment of the vulnerability of 63 socioeconomically important tree species to overexploitation, fire, overgrazing, habitat conversion, and climate change. Trees were selected for assessment from national priority lists, and selections were validated by an expert network representing 20 countries. We used Maxent suitability modeling to predict species distribution ranges, freely accessible spatial data sets to map threat exposures, and functional traits to estimate threat sensitivities. Species-specific vulnerability maps were created as the product of exposure maps and sensitivity estimates. Based on vulnerability to current threats and climate change, we identified priority areas for conservation and restoration. Overall, 74% of the most important areas for conservation of these trees fell outside protected areas, and all species were severely threatened across an average of 47% of their native ranges. The most imminent threats were overexploitation and habitat conversion; populations were severely threatened by these factors in an average of 24% and 16% of their ranges, respectively. Our model predicted limited overall climate change impacts, although some study species were likely to lose over 15% of their habitat by 2050 due to climate change. We pinpointed specific natural areas in Borneo rain forests as hotspots for in situ conservation of forest genetic resources, more than 82% of which fell outside designated protected areas. We also identified degraded areas in Western Ghats, Indochina dry forests, and Sumatran rain forests as hotspots for restoration, where planting or assisted natural regeneration will help conserve these species, and croplands in southern India and Thailand as potentially important agroforestry options. Our results highlight the need for regionally coordinated action for effective conservation and restoration.


Especies de Árboles Valoradas y Amenazadas de Asia Tropical y Subtropical Resumen La diversidad de árboles en los bosques tropicales y subtropicales de Asia es un eje central para las soluciones basadas en la naturaleza. La vulnerabilidad de las especies ante las múltiples amenazas, las cuales afectan el suministro de servicios ambientales, es un tema poco comprendido. Realizamos una evaluación regional espacialmente explícita de la vulnerabilidad de 63 especies de árboles de importancia socioeconómica ante la sobreexplotación, incendios, sobrepastoreo, conversión del hábitat y cambio climático. Los árboles se seleccionaron para su evaluación a partir de listas nacionales de prioridades, y las selecciones fueron validadas por una red de expertos de 20 países. Usamos el modelado de idoneidad Maxent para predecir el rango de distribución de las especies, conjuntos de datos espaciales de libre acceso para mapear la exposición a las amenazas y rasgos funcionales para estimar la susceptibilidad a las amenazas. Con base en la vulnerabilidad a las amenazas actuales y al cambio climático, identificamos las áreas prioritarias para su conservación y restauración. En general, el 74% de las áreas más importantes para la conservación de estos árboles quedó fuera de las áreas protegidas y todas las especies estaban seriamente amenazadas en promedio en el 47% de su distribución nativa. Las amenazas más inminentes fueron la sobreexplotación y la conversión del hábitat; las poblaciones estuvieron seriamente amenazadas por estos factores en promedio en el 24% y 16% de su distribución, respectivamente. Nuestro modelo predijo un impacto general limitado del cambio climático, aunque algunas especies estudiadas tuvieron la probabilidad de perder más del 15% de su hábitat para el 2050 debido a este factor. Identificamos áreas naturales específicas en las selvas de Borneo como puntos calientes para la conservación in situ de los recursos genéticos forestales, más del 82% de los cuales estaban fuera de las áreas protegidas designadas. También identificamos áreas degradadas en los Ghats Occidentales, los bosques secos de Indochina y las selvas de Sumatra como puntos calientes para la restauración, en donde la siembra o la regeneración natural asistida ayudarán a conservar estas especies. Además, identificamos campos de cultivo al sur de India y Tailandia como potenciales opciones importantes de agrosilvicultura. Nuestros resultados resaltan la necesidad de acciones regionales coordinadas para la conservación y restauración efectivas.


Subject(s)
Ecosystem , Trees , Climate Change , Conservation of Natural Resources , Forests , Thailand
15.
Commun Biol ; 4(1): 1166, 2021 10 07.
Article in English | MEDLINE | ID: mdl-34620991

ABSTRACT

Hyperdiverse tropical rainforests, such as the aseasonal forests in Southeast Asia, are supported by high annual rainfall. Its canopy is dominated by the species-rich tree family of Dipterocarpaceae (Asian dipterocarps), which has both ecological (e.g., supports flora and fauna) and economical (e.g., timber production) importance. Recent ecological studies suggested that rare irregular drought events may be an environmental stress and signal for the tropical trees. We assembled the genome of a widespread but near threatened dipterocarp, Shorea leprosula, and analyzed the transcriptome sequences of ten dipterocarp species representing seven genera. Comparative genomic and molecular dating analyses suggested a whole-genome duplication close to the Cretaceous-Paleogene extinction event followed by the diversification of major dipterocarp lineages (i.e. Dipterocarpoideae). Interestingly, the retained duplicated genes were enriched for genes upregulated by no-irrigation treatment. These findings provide molecular support for the relevance of drought for tropical trees despite the lack of an annual dry season.


Subject(s)
Dipterocarpaceae/genetics , Droughts , Gene Duplication , Genome, Plant , Rainforest , Malaysia , Seasons
16.
Sci Rep ; 10(1): 19112, 2020 11 05.
Article in English | MEDLINE | ID: mdl-33154411

ABSTRACT

Worldwide, many mangrove species are experiencing significant population declines, including Rhizophora apiculata, which is one of the most widespread and economically important species in tropical Asia. In Malaysia, there has been an alarming decline in R. apiculata populations driven primarily by anthropogenic activities. However, the lack of genetic and demographic information on this species has hampered local efforts to conserve it. To address these gaps, we generated novel genetic information for R. apiculata, based on 1,120 samples collected from 39 natural populations in Peninsular Malaysia. We investigated its genetic diversity and genetic structure with 19 transcriptome and three nuclear microsatellite markers. Our analyses revealed a low genetic diversity (mean He: 0.352) with significant genetic differentiation (FST: 0.315) among populations of R. apiculata. Approximately two-third of the populations showed significant excess of homozygotes, indicating persistent inbreeding which might be due to the decrease in population size or fragmentation. From the cluster analyses, the populations investigated were divided into two distinct clusters, comprising the west and east coasts of Peninsular Malaysia. The western cluster was further divided into two sub-clusters with one of the sub-clusters showing strong admixture pattern that harbours high levels of genetic diversity, thus deserving high priority for conservation.


Subject(s)
Biological Evolution , Ecosystem , Endangered Species , Genetic Variation , Rhizophoraceae/genetics , Genetic Drift , Malaysia , Microsatellite Repeats
17.
Forensic Sci Int Genet ; 44: 102188, 2020 01.
Article in English | MEDLINE | ID: mdl-31648150

ABSTRACT

To inform product users about the origin of timber, the implementation of a traceability system is necessary for the forestry industry. In this study, we developed a comprehensive genetic database for the important tropical timber species Merbau, Intsia palembanica, to trace its geographic origin within peninsular Malaysia. A total of 1373 individual trees representing 39 geographically distinct populations of I. palembanica were sampled throughout peninsular Malaysia. We analyzed the samples using a combination of four chloroplast DNA (cpDNA) markers and 14 short tandem repeat (STR) markers to establish both cpDNA haplotype and STR allele frequency databases. A haplotype map was generated through cpDNA sequencing for population identification, resulting in six unique haplotypes based on 10 informative intraspecifically variable sites. Subsequently, an STR allele frequency database was developed from 14 STRs allowing individual identification. Bayesian cluster analysis divided the individuals into two genetic clusters corresponding to the northern and southern regions of peninsular Malaysia. Tests of conservativeness showed that the databases were conservative after the adjustment of the θ values to 0.2000 and 0.2900 for the northern (f = 0.0163) and southern (f = 0.0285) regions, respectively. Using self-assignment tests, we observed that individuals were correctly assigned to populations at rates of 40.54-94.12% and to the identified regions at rates of 79.80-80.62%. Both the cpDNA and STR markers appear to be useful for tracking Merbau timber originating from peninsular Malaysia. The use of these forensic tools in addition to the existing paper-based timber tracking system will help to verify the legality of the origin of I. palembanica and to combat illegal logging issues associated with the species.


Subject(s)
Conservation of Natural Resources , Databases, Genetic , Fabaceae/genetics , Geography , Crime , DNA Fingerprinting , DNA, Chloroplast/genetics , Gene Frequency , Genetic Markers , Haplotypes , Humans , Malaysia , Microsatellite Repeats , Polymerase Chain Reaction
18.
J Hered ; 110(7): 844-856, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31554011

ABSTRACT

Southeast Asian rainforests at upper hill elevations are increasingly vulnerable to degradation because most lowland forest areas have been converted to different land uses. As such, understanding the genetics of upper hill species is becoming more crucial for their future management and conservation. Shorea platyclados is an important, widespread upper hill dipterocarp in Malaysia. To elucidate the genetic structure of S. platyclados and ultimately provide guidelines for a conservation strategy for this species, we carried out a comprehensive study of the genetic diversity and demographic history of S. platyclados. Twenty-seven populations of S. platyclados across its range in Malaysia were genotyped at 15 polymorphic microsatellite loci and sequenced at seven noncoding chloroplast DNA (cpDNA) regions. A total of 303 alleles were derived from the microsatellite loci, and 29 haplotypes were identified based on 2892 bp of concatenated cpDNA sequences. The populations showed moderately high genetic diversity (mean HE = 0.680 for microsatellite gene diversity and HT = 0.650 for total haplotype diversity) and low genetic differentiation (FST = 0.060). Bayesian clustering divided the studied populations into two groups corresponding to western and eastern Malaysia. Bottleneck analysis did not detect any recent bottleneck events. Extended Bayesian skyline analyses showed a model of constant size for the past population history of this species. Based on our findings, priority areas for in situ and ex situ conservation and a minimum population size are recommended for the sustainable utilization of S. platyclados.


Subject(s)
Dipterocarpaceae/classification , Dipterocarpaceae/genetics , Genetic Variation , Genetics, Population , Haplotypes , Alleles , Bayes Theorem , Conservation of Natural Resources , DNA, Chloroplast , Microsatellite Repeats , Rainforest
19.
Acta Trop ; 200: 105186, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31542371

ABSTRACT

The small blood flukes of genus Schistosoma, which cause one of the most prevalent and serious parasitic zoonosis schistosomiasis, are dependent on immune-related factors of their mammalian host to facilitate their growth and development, and the formation of granulomatous pathology caused by eggs deposited in host's liver and intestinal wall. Schistosome development is hampered in the mice lacking just T cells, and is even more heavily retarded in the severe combined immunodeficient (SCID) mice lacking both T and B lymphocytes. Nevertheless, it's still not clear about the underlying regulatory molecular mechanisms of schistosome growth and development by host's immune system. This study, therefore, detected and compared the serum metabolic profiles between the immunodeficient mice and immunocompetent mice (SCID mice vs. BALB/c mice) before and after S. japonicum infection (on the thirty-fifth day post infection using liquid chromatography-mass spectrometry (LC-MS). Totally, 705 ion features in electrospray ionization in positive-ion mode (ESI+) and 242 ion features in ESI- mode were identified, respectively. First, distinct serum metabolic profiles were identified between SCID mice and BALB/c mice without S. japonicum worms infection. Second, uniquely perturbed serum metabolites and their enriched pathways were also obtained between SCID mice and BALB/c mice after S. japonicum infection, which included differential metabolites due to both species differences and differential responses to S. japonicum infection. The metabolic pathways analysis revealed that arachidonic acid metabolism, biosynthesis of unsaturated fatty acids, linoleic acid metabolism, glycosylphosphatidylinositol (GPI)-anchor biosynthesis, alpha-linolenic acid metabolism, glycerophospholipid metabolism, sphingolipid metabolism and purine metabolism were enriched based on the differential serum metabolites between SCID mice and BALB/c mice after S. japonicum infection, which was addressed to be related to the retarded growth and development of S. japonicum in SCID mice. These findings provide new clues to the underlying molecular events of host's systemic metabolic changes on the growth and development of S. japonicum worms, and also provide quite promising candidates for exploitation of drugs or vaccines against schistosome and schistosomiasis.


Subject(s)
Metabolomics , Mice, Inbred BALB C/growth & development , Mice, SCID/growth & development , Schistosoma japonicum/immunology , Schistosomiasis japonica/immunology , Serum/immunology , Serum/metabolism , Animals , Female , Mice , Mice, Inbred BALB C/metabolism , Mice, SCID/metabolism
20.
Parasitol Res ; 118(6): 1821-1831, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31011809

ABSTRACT

Previous studies showed that protein extract from head-foot tissue of Oncomelania hupensis (O. hupensis) (PhfO), when cocultured with mother sporocysts of Schistosoma japonicum (S. japonicum), was beneficial for parasite's growth and development but the underlying mechanisms remain unclear. One possible strategy for PhfO to promote the growth and development of mother sporocysts of S. japonicum is to upregulate parasite's survival genes. Fructose-1,6-bisphosphate aldolase (ALD), an essential enzyme of glycometabolism in the energy metabolism process, plays an important role in the survival and the growth and development of schistosomes. Using an in vitro coculture system, in this study, we analyzed the potential involvement of the ald gene in the growth and development of mother sporocysts of S. japonicum following coculture with PhfO. We found that coculture with PhfO promoted the growth and development and the survival of mother sporocysts, and increased parasites' ATP consumption level. Mother sporocysts cocultured with PhfO showed a significantly increased expression of the ald gene at both RNA and protein levels. The ALD protein mainly expressed in the cytoplasm of mother sporocysts. Knockdown of ald gene in parasites decreased the ALD protein expression and the ATP consumption level, suppressed the growth and development, and attenuated the survival of mother sporocysts. In ald knockdown mother sporocysts, the effects of PhfO on the ALD expression, the ATP consumption level, the growth and development, and the survival of larvae were significantly abolished. Therefore, the data suggest that PhfO could promote the growth and development, and the survival of mother sporocysts of S. japonicum via upregulating the expression of the ald gene.


Subject(s)
Fructose-Bisphosphate Aldolase/genetics , Oocysts/growth & development , Schistosoma japonicum/growth & development , Snails/metabolism , Tissue Extracts/pharmacology , Transcriptional Activation/drug effects , Animals , Fructose-Bisphosphate Aldolase/biosynthesis , Larva/growth & development , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...