Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 253(Pt 4): 127014, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37742900

ABSTRACT

Hemostasis plays a critical role in the early stage of wound healing, especially in acute wounds which can significantly improve the survival of patients. Based on the excellent biocompatibility of natural biomaterials, in this study, we prepared a series of novel hemostatic sponges by using tilapia skin, a marine biological resource, and extracting tilapia skin-derived gelatin, collagen, and acellular dermal matrix through five different methods. Using in vitro sheep blood and in vivo rat liver hemorrhage models, we found that tilapia skin sponges had excellent coagulation and hemostatic abilities. Among them, the collagen sponge exhibited optimal hemostasis performance because it could accelerate clotting by binding to the specific sites of blood cells and platelets. Furthermore, the sponges' porous structure enhanced the capability to absorb blood, thus effectively promoting hemostasis. In summary, we reported an efficient and convenient method to prepare marine biological resources into sponges, which provided a novel class of alternatives for hemostasis in acute wounds with broad application prospects.


Subject(s)
Acellular Dermis , Hemostatics , Tilapia , Humans , Rats , Animals , Sheep , Hemostatics/pharmacology , Hemostatics/chemistry , Gelatin/chemistry , Tilapia/metabolism , Collagen/chemistry , Hemostasis
2.
J Hazard Mater ; 452: 131202, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-36934627

ABSTRACT

In this study, Se@NC-x decorated with Se was successfully prepared via two-step calcination with zeolitic imidazole framework (ZIF) as a precursor. Mechanistic studies show that PMS would be adsorbed onto the surface of Se@NC-900 to form an active complex (Se@NC-900/PMS*), and the active Se@NC-900/PMS* could oxidize phenol by the rapid decomposition of PMS. Specifically, electrons are extracted by Se@NC-900/PMS* and then transferred to the surface of Se@NC-900, which can trigger the degradation of phenol. Notably, it is found that the local charge redistribution caused by the doping of Se can activate the catalytic potential of the intrinsically inert carbon skeleton through density flooding theory (DFT) calculations. The XLogP, ΔE, VIP, and ELUMO (Se@NC/PMS)-HOMO (pollutants) and degradation rate constants of different micropollutants were correlated well linearly. This indicates that the Se@NC-900/PMS system has a great selectivity for the degradation of pollutants. Overall, these findings not only illustrate the role of Se in tuning the electronic structure of Se@NC-x to enhance the activation of PMS, but also bridge the gap in our knowledge about the physicochemical properties and degradation performance of Se@NC catalysts.

3.
Chemosphere ; 307(Pt 3): 135961, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35963378

ABSTRACT

The high-performance and free secondary pollution of the catalysts are the most critical issues in the peroxymonosulfate-based advanced oxidation processes (PMS-AOPs). In this research, the KOH was used to activate ZIF-8 derived carbon materials to synthesize the NC-KOH-x (x = 700, 800, 900 °C), which was an effective metal-free PMS activator. As-prepared NC-KOH-x showed significant improvement not only pore structure and BET surface area but also CO groups, and graphite N content, which were beneficial for the adsorptive and oxidative reaction. The NC-KOH-900 as an excellent metal-free carbon-catalyst exhibited considerable reactivity for bisphenol A (BPA) removal in broad pH ranges. Almost 100% of BPA was eliminated using 9 mg NC-KOH-900, 0.5 mM PMS within 60 min. Interestingly, It was found that the BPA removal efficiency by adding PMS after saturated adsorption of NC-KOH-x was better than that by adding NC-KOH-x and PMS simultaneously. Electronic paramagnetic resonance (EPR) and quenching experiments results demonstrated that the BPA degradation relied mainly on the nonradical (1O2) pathways and the defects (ID/IG), graphitic nitrogen, pyridinic nitrogen, and CO were verified as leading catalytic sites for BPA degradation via PMS activation. Finally, degradation pathways of BPA were proposed and the Toxicity Estimation Software Tool (T.E.S.T.) result implicated that the intermediates of BPA were environmentally friendly to the microorganism and recycled in the ecosystem. The outcomes of this study illustrated the NC-KOH-x owned many merits of state-of-the-art, eco-friendly, and high-performance for great potential practical application value.


Subject(s)
Carbon , Graphite , Benzhydryl Compounds , Carbon/chemistry , Ecosystem , Metals , Nitrogen/chemistry , Peroxides/chemistry , Phenols , Porosity
SELECTION OF CITATIONS
SEARCH DETAIL
...