Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
J Control Release ; 365: 583-601, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38048963

ABSTRACT

The complex etiologies and mechanisms of Alzheimer's disease (AD) underscore the importance for devising multitarget drugs to achieve effective therapy. MicroRNAs (miRNAs) are capable of concurrently regulating the expression of multiple proteins by selectively targeting disease- associated genes in a sequence-specific fashion. Nonetheless, as RNA-based drugs, their stability in the circulation and capacity of traversing the blood-brain barrier (BBB) is largely compromised, thereby limiting their potential clinical applications. In this study, we formulated the nanoliposomes encapsulating polyethyleneimine (PEI)/miR-195 complex (DPMT@PEI/miR-195) that was engineered through dual modifications to contain P-aminophenyl-alpha-d-mannopyranoside (MAN) and cationic cell-penetrating peptide (TAT). DPMT@PEI/miR-195 exhibited the enhanced BBB- and cell membrane penetrating capability. As expected, we observed that DPMT@PEI/miR-195 administered through intravenous tail injection of produced greater effectiveness than donepezil and the same range of effect as aducanumab in alleviating the cognitive decline in 7-month-old APP/PS1 mice. Moreover, the combination treatment with DPMT@PEI/miR-195 and donepezil effectively ameliorated the deterioration of cognition in 16-month-old APP/PS1 mice, with enhanced effects than either DPMT@PEI/miR-195 or donepezil alone. Furthermore, DPMT@PEI/miR-195 effectively attenuated the positive signals of Aß, AT8, and CD68 in APP/PS1 mice without notable side effects. Our findings indicate DPMT@PEI/miR-195 as a promising potentially new agent or approach for the prophylaxis and treatment of early and advanced stages of Alzheimer's disease.


Subject(s)
Alzheimer Disease , MicroRNAs , Humans , Mice , Animals , Infant , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Liposomes/therapeutic use , Amyloid beta-Protein Precursor/metabolism , Donepezil/therapeutic use , Mice, Transgenic , MicroRNAs/genetics , MicroRNAs/therapeutic use , MicroRNAs/metabolism , Disease Models, Animal , Amyloid beta-Peptides/metabolism
2.
Front Pharmacol ; 12: 633805, 2021.
Article in English | MEDLINE | ID: mdl-33981225

ABSTRACT

Although lots of new drugs are developed to treat Alzheimer's disease (AD), many clinical trials of monotherapy have failed to affect disease progression or symptoms compared with placebo. Recently, scientists believe that combination treatment is more promising than monotherapy. Previous studies found that microRNA-195 (miR-195) was down-regulated in the hippocampi and cortices of chronic brain hypoperfusion (CBH) rats and ApoE4(+/+) mice, and up-regulation of miR-195 can improve the declined cognitive function of ApoE4(+/+) mice and CBH rats by targeting multi-genes that are related to AD pathology, including amyloid precursor protein (APP) and ß-site APP cleaving enzyme 1 (BACE1) genes. However, whether the gain-of-function of miR-195 could improve the impaired learning and memory ability of APP/PS1 transgenic mouse has not been reported. In this study, we stereotaxically injected lentiviral-carried miR-195 into the bilateral hippocampus of 4-month-old (4M) APP/PS1 mice. Morris water maze (MWM) was performed to detect the effect of miR-195 on the cognitive function of APP/PS1 mice after 1M, 2M, and 3M treatment. Western blot was used to detect the expression of APP, BACE1, and AT8. Aß plagues were quantitatively assessed by immunofluorescence technique. We found that the declined cognitive phenotype of APP/PS1 mice occurred at the age of 6M, not at the age of 5M. And treatment of Lv-pre-miR-195 to APP/PS1 mice for 1M did not achieve any changes. Although Lv-pre-miR-195 treatment for 2M improved the declined learning ability of APP/PS1 mice, it did not affect the memory functions. However, Lv-pre-miR-195 treatment in APP/PS1 mice for 3M can effectively improve both the learning and memory ability of APP/PS1 mice at the age of 7M. Further studies demonstrated that gain-of-function of miR-195 by Lv-pre-miR-195 injection could inhibit the increased APP and AT8 expression of APP/PS1 mice but did not affect BACE1 level that was not changed in both hippocampus and cortex. By counting the number of Aß plaques of different sizes, we found that Lv-pre-miR-195 treatment mainly reduced the number of Aß plaques of less than 20 µm, but did not affect the number of Aß plaques of greater than 50 µm. Taken together, the gain-of -function of miR-195 in the hippocampus can improve the cognition of APP/PS1 mice, probably by blocking the formation of Aß plagues rather than clearing those that have already formed Aß plagues.

3.
Front Cell Neurosci ; 14: 586591, 2020.
Article in English | MEDLINE | ID: mdl-33132852

ABSTRACT

Chronic cerebral hypoperfusion (CCH) is considered a preclinical condition of mild cognitive impairment and thought to precede dementia. However, as the principal cholinergic source of hippocampus, whether the septo-hippocampal neurocircuit was impaired after CCH is still unknown. In this study, we established the CCH rat model by bilateral common carotid artery occlusion (2VO). Under anesthesia, the medial septum (MS) of rats was stimulated to evoke the field excitatory post-synaptic potential (fEPSP) in the pyramidal cell layer of dCA1. Consequently, we observed decreased amplitude of fEPSP and increased paired-pulse ratio (PPR) after 8-week CCH. After tail pinch, we also found decreased peak frequency and shortened duration of hippocampal theta rhythm in 2VO rats, indicating the dysfunction of septo-hippocampal neurocircuit. Besides, by intracerebroventricularly injecting GABAergic inhibitor (bicuculline) and cholinergic inhibitors (scopolamine and mecamylamine), we found that CCH impaired both the pre-synaptic cholinergic release and the post-synaptic nAChR function in MS-dCA1 circuits. These results gave an insight into the role of CCH in the impairment of cholinergic MS-dCA1 neurocircuits. These findings may provide a new idea about the CCH-induced neurodegenerative changes.

4.
J Neuroinflammation ; 17(1): 244, 2020 Aug 20.
Article in English | MEDLINE | ID: mdl-32819407

ABSTRACT

BACKGROUND: Microglial polarization is a dynamic response to acute brain hypoxia induced by stroke and traumatic brain injury (TBI). However, studies on the polarization of microglia in chronic cerebral circulation insufficiency (CCCI) are limited. Our objective was to investigate the effect of CCCI on microglial polarization after chronic brain hypoperfusion (CBH) and explore the underlying molecular mechanisms. METHODS: CBH model was established by bilateral common carotid artery occlusion (2-vessel occlusion, 2VO) in rats. Using the stereotaxic injection technique, lenti-pre-miR-195 and anti-miR-195 oligonucleotide fragments (lenti-pre-AMO-miR-195) were injeted into the CA1 region of the hippocampus to construct animal models with high or low expression of miR-195. Immunofluorescence staining and flow cytometry were conducted to examine the status of microglial polarization. In vitro, Transwell co-culture system was taken to investigate the role of miR-195 on neuronal-microglial communication through CX3CL1-CX3CR1 signaling. Quantitative real-time PCR was used to detect the level of miR-195 and inflammatory factors. The protein levels of CX3CL1 and CX3CR1 were evaluated by both western blot and immunofluorescence staining. RESULTS: CBH induced by 2VO initiated microglial/macrophage activation in the rat hippocampus from 1 week to 8 weeks, as evaluated by increased ratio of (CD68+ and CD206+)/Iba-1 immunofluorescence. And the microglial/macrophage polarization was shifted towards the M1 phenotype at 8 weeks following CBH. The expression of CX3CL1 and CX3CR1 was increased in the hippocampus of 2VO rats at 8 weeks. An in vitro study in a Transwell co-culture system demonstrated that transfection of either primary-cultured neonatal rat neurons (NRNs) or microglial BV2 cells with AMO-195-induced M1 polarization of BV2 cells and increased CX3CL1 and CX3CR1 expression and that these effects were reversed by miR-195 mimics. Furthermore, the upregulation of miR-195 induced by lenti-pre-miR-195 injection prevented microglial/macrophage polarization to M1 phenotype triggered by hippocampal injection of lenti-pre-AMO-miR-195 and 2VO surgery. CONCLUSIONS: Our findings conclude that downregulation of miR-195 in the hippocampus is involved in CBH-induced microglial/macrophage polarization towards M1 phenotype by governing communication between neurons and microglia through the regulation of CX3CL1 and CX3CR1 signaling. This indicates that miR-195 may provide a new strategy for clinical prevention and treatment of CBH.


Subject(s)
Brain Ischemia/metabolism , CX3C Chemokine Receptor 1/metabolism , Chemokine CX3CL1/metabolism , Hippocampus/metabolism , Macrophages/metabolism , MicroRNAs/metabolism , Microglia/metabolism , Animals , Brain Ischemia/genetics , Cell Line , Cell Polarity/physiology , Disease Models, Animal , Down-Regulation , Gene Expression Regulation , Male , MicroRNAs/genetics , Neurons/metabolism , Rats , Rats, Sprague-Dawley , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL