Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurochem ; 165(6): 791-808, 2023 06.
Article in English | MEDLINE | ID: mdl-36660878

ABSTRACT

The traditional medicinal mushroom Hericium erinaceus is known for enhancing peripheral nerve regeneration through targeting nerve growth factor (NGF) neurotrophic activity. Here, we purified and identified biologically new active compounds from H. erinaceus, based on their ability to promote neurite outgrowth in hippocampal neurons. N-de phenylethyl isohericerin (NDPIH), an isoindoline compound from this mushroom, together with its hydrophobic derivative hericene A, were highly potent in promoting extensive axon outgrowth and neurite branching in cultured hippocampal neurons even in the absence of serum, demonstrating potent neurotrophic activity. Pharmacological inhibition of tropomyosin receptor kinase B (TrkB) by ANA-12 only partly prevented the NDPIH-induced neurotrophic activity, suggesting a potential link with BDNF signaling. However, we found that NDPIH activated ERK1/2 signaling in the absence of TrkB in HEK-293T cells, an effect that was not sensitive to ANA-12 in the presence of TrkB. Our results demonstrate that NDPIH acts via a complementary neurotrophic pathway independent of TrkB with converging downstream ERK1/2 activation. Mice fed with H. erinaceus crude extract and hericene A also exhibited increased neurotrophin expression and downstream signaling, resulting in significantly enhanced hippocampal memory. Hericene A therefore acts through a novel pan-neurotrophic signaling pathway, leading to improved cognitive performance.


Subject(s)
MAP Kinase Signaling System , Spatial Memory , Mice , Animals , Signal Transduction , Neurons/metabolism , Hippocampus/metabolism , Brain-Derived Neurotrophic Factor/pharmacology , Brain-Derived Neurotrophic Factor/metabolism , Receptor, trkB/metabolism , Cells, Cultured
2.
FEBS Lett ; 587(5): 452-9, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-23333298

ABSTRACT

α-Synuclein (α-syn) can be secreted from neurons into the extracellular space, affecting the homeostasis of neighboring cells, but the pathophysiology of secreted α-syn remains largely unknown. We found that when exogenously applied to COS-7 cells, α-syn secreted from differentiated SH-SY5Y cells was taken up by dynamin-dependent endocytosis. Upon internalization, α-syn significantly increased the rate of transferrin receptor (TfR) internalization and recycling, and subsequently the surface levels of TfR. The effects are attributable to the oligomeric form, but not monomeric or fibrillar form, of extracellular α-syn. Together, multiple alterations in membrane trafficking by secreted oligomeric α-syn may contribute to the early stages of pathogenesis in Parkinson's disease.


Subject(s)
Endocytosis , alpha-Synuclein/physiology , Animals , COS Cells , Cell Line , Chlorocebus aethiops , Culture Media, Conditioned/chemistry , Dynamins/metabolism , Humans , Kinetics , Models, Biological , Molecular Targeted Therapy , Parkinson Disease/drug therapy , Protein Structure, Quaternary , Protein Transport , Receptors, Transferrin/metabolism , Transferrin/metabolism , alpha-Synuclein/chemistry , alpha-Synuclein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...