Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 14: 1180837, 2023.
Article in English | MEDLINE | ID: mdl-37325614

ABSTRACT

Objectives: The mechanism of Brucella infection regulating macrophage phenotype has not been completely elucidated until now. This study aimed to determine the mechanism of Brucella abortus in the modulation of macrophage phenotype using RAW264.7 cells as a model. Materials and methods: RT-qPCR, ELISA and flow cytometry were used to detect the inflammatory factor production and phenotype conversion associated with M1/M2 polarization of macrophages by Brucella abortus infection. Western blot and immunofluorescence were used to analyze the role of nuclear factor kappa B (NF-κB) signaling pathway in regulation of Brucella abortus-induced macrophage polarization. Chromatin immunoprecipitation sequencing (Chip-seq), bioinformatics analysis and luciferase reporter assay were used to screen and validate NF-κB target genes associated with macrophage polarization and further verify its function. Results: The results demonstrate that B. abortus induces a macrophage phenotypic switch and inflammatory response in a time-dependent manner. With the increase of infection time, B. abortus infection-induced M1-type increased first, peaked at 12 h, and then decreased, whereas the M2-type decreased first, trough at 12 h, and then increased. The trend of intracellular survival of B. abortus was consistent with that of M2 type. When NF-κB was inhibited, M1-type polarization was inhibited and M2-type was promoted, and the intracellular survival of B. abortus increased significantly. Chip-seq and luciferase reporter assay results showed that NF-κB binds to the glutaminase gene (Gls). Gls expression was down-regulated when NF-κB was inhibited. Furthermore, when Gls was inhibited, M1-type polarization was inhibited and M2-type was promoted, the intracellular survival of B. abortus increased significantly. Our data further suggest that NF-κB and its key target gene Gls play an important role in controlling macrophage phenotypic transformation. Conclusions: Taken together, our study demonstrates that B. abortus infection can induce dynamic transformation of M1/M2 phenotype in macrophages. Highlighting NF-κB as a central pathway that regulates M1/M2 phenotypic transition. This is the first to elucidate the molecular mechanism of B. abortus regulation of macrophage phenotype switch and inflammatory response by regulating the key gene Gls, which is regulated by the transcription factor NF-κB.


Subject(s)
Brucella abortus , NF-kappa B , NF-kappa B/metabolism , Glutaminase/metabolism , Signal Transduction/physiology , Macrophages/metabolism
2.
Vet Med Sci ; 9(3): 1359-1368, 2023 05.
Article in English | MEDLINE | ID: mdl-36977209

ABSTRACT

BACKGROUND: Escherichia coli infections are common in Xinjiang, a major region of cattle and sheep breeding in China. Therefore, strategies are required to control E. coli. The aim of this study was to investigate the phylogenetic groups, virulence genes, and antibiotic resistance characteristics of E. coli isolates. METHODS: In this study, 116 tissue samples were collected from the organs of cattle and sheep that were suspected of having E. coli infections between 2015 and 2019. Bacteria in the samples were identified using a biochemical identification system and amplification of 16S rRNA, and the phylogenetic groupings of E. coli isolates were determined by multiplex polymerase chain reactions. In addition, PCR detection and analysis of virulence factors, antibiotic resistance genes, and drug-resistant phenotypes of E. coli isolates were performed. RESULTS: A total of 116 pathogenic E. coli strains belonging to seven phylogenetic groups were isolated, with the majority of isolates in groups A and B1. Among the virulence genes, curli-encoding crl had the highest detection rate of 97.4%, followed by hemolysin-encoding hlyE with the detection rate of 94.82%. Antimicrobial susceptibility test results indicated that the isolates had the highest rates of resistance against streptomycin (81.9%). CONCLUSION: These characteristics complicate the prevention and treatment of E. coli-related diseases in Xinjiang.


Subject(s)
Cattle Diseases , Escherichia coli Infections , Sheep Diseases , Animals , Cattle , Sheep , Escherichia coli , Phylogeny , RNA, Ribosomal, 16S , Escherichia coli Infections/epidemiology , Escherichia coli Infections/veterinary , Escherichia coli Infections/microbiology , China/epidemiology , Multiplex Polymerase Chain Reaction/veterinary , Molecular Typing/veterinary , Drug Resistance , Cattle Diseases/epidemiology , Cattle Diseases/microbiology , Sheep Diseases/epidemiology
3.
Front Microbiol ; 13: 968592, 2022.
Article in English | MEDLINE | ID: mdl-36060772

ABSTRACT

Brucella can inhabit hostile environments, including osmotic stress. How Brucella responds collectively to osmotic stress is largely unexplored, particularly in spatially structured communities such as a biofilm. To gain insight into this growth mode, we set out to characterize the Brucella melitensis 16M biofilm, describe its phenotype, and carry out a comparative transcriptomic analysis between biofilms under osmotic stress and control conditions. We determined that the bacteria challenged with 1.5 M NaCl had a reduced ability to aggregate and form clumps and develop a biofilm; however, the salt stress promoted the release of the outer membrane vesicles from the biofilm. Together with the genotypical response to osmotic stress, we identified 279 differentially expressed genes in B. melitensis 16M grown under osmotic conditions compared with control conditions; 69 genes were upregulated and 210 downregulated. Under osmotic stress, the main changed genes of biofilm were predicted to be involved in flagellar assembly, cell envelope, translation, small RNA regulation, transport and binding proteins, and energy metabolism. In addition, the ABC transporter was enriched in the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. We highlight 12 essential ABC transporter genes associated with a bacterial response to osmotic stress at the biofilm stage, including one specific locus, BME_RS12880, mediating betaine accumulation in biofilms to eliminate osmotic stress. The current study results can help researchers gain insights into B. melitensis 16M biofilm adaptation to osmotic stress and provide information for developing intervention strategies to control Brucella.

4.
Front Vet Sci ; 9: 895140, 2022.
Article in English | MEDLINE | ID: mdl-35898544

ABSTRACT

Despite the recognized epidemiological importance of ticks as vectors for pathogens that cause numerous zoonotic and veterinary diseases, data regarding the pathogens of pet dogs and their parasitic ticks in the Junggar Basin are scarce. In this study, a total of 178 blood samples and 436 parasitic ticks were collected from pet dogs in Junggar Basin, Xinjiang Uygur Autonomous Region (XUAR), north-western China. All ticks were identified as Rhipicephalus turanicus sensu stricto (s.s.) according to morphological and molecular characteristics. Rh. turanicus s.s. ticks were collected from pet dogs in China for the first time. Seven tick-borne pathogens, such as Ehrlichia chaffeensis, Anaplasma phagocytophilum, Rickettsia massiliae, Candidatus R. barbariae, Brucella spp., Rickettsia sibirica, and Anaplasma ovis, were detected from ticks, whereas the first five bacteria were detected from blood samples of dogs. Brucella spp. was the most predominant pathogen in both blood samples and ticks of pet dogs, with the detection rates of 16.29 and 16.74%, respectively. Moreover, 17 ticks and 1 blood sample were co-infected with two pathogens, and 1 tick was co-infected with three pathogens. This study provided molecular evidence for the occurrence of Anaplasma spp., Ehrlichia spp., Rickettsia spp., and Brucella spp. circulating in pet dogs and their parasitic ticks in Junggar Basin, north-western China. These findings extend our knowledge of the tick-borne pathogens in pet dogs and their parasitic ticks in Central Asia; therefore, further research on these pathogens and their role in human and animal diseases is required.

5.
BMC Vet Res ; 15(1): 235, 2019 Jul 08.
Article in English | MEDLINE | ID: mdl-31286947

ABSTRACT

BACKGROUND: Enterococcus is an important component of normal flora in human and animals, but in recent years, the pathogenicity of Enterococcus has been confirmed in clinical medicine. More and more animal infections have been reported in veterinary clinics. For the last decades, outbreaks of encephalitis in lambs have become much more common in Northern Xinjiang, China. Consequent studies have confirmed that these affected lambs had been commonly infected with E. faecalis. More than 60 E. faecalis were isolated from the brain of infected lambs, A highly virulent strain entitled E. faecalis 2A (XJ05) were selected, sequenced and analyzed. RESULT: Using whole genome sequence and de novo assembly, 18 contigs with NGS and annotation were obtained. It is confirmed that the genome has a size of 2.9 Mb containing 2783 protein-coding genes, as well as 54 tRNA genes and 4 rRNA genes. Some key features of this strain were identified, which included 7 predicted antibiotic resistance genes and 18 candidate virulence factor genes. CONCLUSION: The E. faecalis 2A (XJ05) genome is conspicuous smaller than E.faecalis V583, but not significantly different from other non-pathogenic E. faecalis. It carried 7 resistance genes including 4 kind of antibiotics which were consistent with the results of extensive drug resistance phenotypic, including aminoglycoside, macrolide, phenicol, and tetracycline. 2A (XJ05) also carried 18 new virulence factor genes related to virulence, hemolysin genes (cylA, cylB, cylM, cylL) may play an important role in lamb encephalitis by E. faecalis 2A (XJ05).


Subject(s)
Drug Resistance, Bacterial/genetics , Encephalitis/veterinary , Enterococcus faecalis/genetics , Enterococcus faecalis/pathogenicity , Genome, Bacterial/genetics , Sheep Diseases/microbiology , Virulence/genetics , Animals , Drug Resistance, Multiple/genetics , Encephalitis/microbiology , Sheep
SELECTION OF CITATIONS
SEARCH DETAIL
...