Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Ecol Evol ; 13(5): e10055, 2023 May.
Article in English | MEDLINE | ID: mdl-37181202

ABSTRACT

Assessing plant diversity during community succession based on plant trait and phylogenetic features within a community (alpha scale) and among communities (beta scale) could improve our understanding of community succession mechanism. However, whether changes of community functional diversity at alpha and beta scale are structured by different traits and whether integrating plant traits and phylogeny can enhance the ability in detecting diversity pattern have not been studied in detail. Thirty plots representing different successional stages were established on the Loess Plateau of China and 15 functional traits were measured for all coexisting species. We first analyzed the functional alpha and beta diversity along succession by decomposing species trait into alpha and beta components and then integrated key traits with phylogenetic information to explore their roles in shaping species turnover during community succession. We found that functional alpha diversity increased along successional stages and was structured by morphological traits, while beta diversity decreased during succession and was more structured by stoichiometry traits. Phylogenetic alpha diversity showed congruent pattern with functional alpha diversity because of phylogenetic conservation of trait alpha components (variation within community), while beta diversity showed incongruent pattern due to phylogenetic randomness of trait beta components (variation among communities). Furthermore, only integrating relatively conserved traits (plant height and seed mass) and phylogenetic information can raise the detecting ability in assessing diversity change. Overall, our results reveal the increasing niche differentiation within community and functional convergence among communities with succession process, indicating the importance of matching traits with scale in studying community functional diversity and the asymmetry of traits and phylogeny in reflecting species ecological differences under long-term selection pressures.

2.
Front Plant Sci ; 13: 902509, 2022.
Article in English | MEDLINE | ID: mdl-35720582

ABSTRACT

Water availability is a key environmental factor affecting plant species distribution, and the relationships between hydraulic and economic traits are important for understanding the species' distribution patterns. However, in the same community type but within different soil water availabilities, the relationships in congeneric species remain ambiguous. In northwest China, Quercus wutaishanica forests in the Qinling Mountains (QM, humid region) and Loess Plateau (LP, drought region) have different species composition owing to contrasting soil water availability, but with common species occurring in two regions. We analyzed eight hydraulic traits [stomatal density (SD), vein density (VD), wood specific gravity (WSGbranch), lower leaf area: sapwood area (Al: As), stomatal length (SL), turgor loss point (ΨTlp), maximum vessel diameter (Vdmax) and height (Height)] and five economic traits [leaf dry matter content (LDMC), leaf tissue density (TD), leaf dry mass per area (LMA), Leaf thickness (LT) and maximum net photosynthetic rate (Pmax)] of congeneric species (including common species and endemic species) in Q. wutaishanica forests of QM and LP. We explored whether the congeneric species have different economic and hydraulic traits across regions. And whether the relationship between hydraulic and economic traits was determined by soil water availability, and whether it was related to species distribution and congeneric endemic species composition of the same community. We found that LP species tended to have higher SD, VD, WSGbranch, Al: As, SL, ΨTlp and Vdmax than QM species. There was a significant trade-off between hydraulic efficiency and safety across congeneric species. Also, the relationships between hydraulic and economic traits were closer in LP than in QM. These results suggested that relationships between hydraulic and economic traits, hydraulic efficiency and safety played the role in constraining species distribution across regions. Interestingly, some relationships between traits changed (from significant correlation to non-correlation) in common species across two regions (from LP to QM), but not in endemic species. The change of these seven pairs of relationships might be a reason for common species' wide occurrence in the two Q. wutaishanica forests with different soil water availability. In drought or humid conditions, congeneric species developed different types of adaptation mechanisms. The study helps to understand the environmental adaptive strategies of plant species, and the results improve our understanding of the role of both hydraulic and economic traits during community assembly.

3.
Funct Plant Biol ; 49(7): 600-612, 2022 06.
Article in English | MEDLINE | ID: mdl-35272763

ABSTRACT

Habitat selection behaviour is an effective strategy adopted by clonal plants in heterogeneous understorey light environments, and it is likely regulated by the parental environment's ultraviolet-B radiation levels (UV-B) due to the photomorphogenesis of UV-B and maternal effects. Here, parental ramets of Duchesnea indica were treated with two UV-B radiation levels [high (UV5 group) and low (UV10 group)], newborn offspring were grown under a heterogeneous light environment (ambient light vs shade habitat), and the growth and DNA methylation variations of parents and offspring were analysed. The results showed that parental UV-B affected not only the growth of the parent but also the offspring. The offspring of different UV-B-radiated parents showed different performances. Although these offspring all displayed a tendency to escape from light environments, such as entering shade habitats earlier, and allocating more biomass under shade (33.06% of control, 42.28% of UV5 and 72.73% of UV10), these were particularly obvious in offspring of the high UV-B parent. Improvements in epigenetic diversity (4.77 of control vs 4.83 of UV10) and total DNA methylation levels (25.94% of control vs 27.15% of UV10) and the inhibition of shade avoidance syndrome (denser growth with shorter stolons and internodes) were only observed in offspring of high UV-B parents. This difference was related to the eustress and stress effects of low and high UV-B, respectively. Overall, the behaviour of D. indica under heterogeneous light conditions was regulated by the parental UV-B exposure. Moreover, certain performance improvements helped offspring pre-regulate growth to cope with future environments and were probably associated with the effects of maternal DNA methylation variations in UV-B-radiated parents.


Subject(s)
Ecosystem , Ultraviolet Rays , Biomass , DNA Methylation , Ultraviolet Rays/adverse effects
4.
Front Plant Sci ; 12: 633982, 2021.
Article in English | MEDLINE | ID: mdl-33719308

ABSTRACT

Clonal plants in heterogeneous environments can benefit from their habitat selection behavior, which enables them to utilize patchily distributed resources efficiently. It has been shown that such behavior can be strongly influenced by their memories on past environmental interactions. Epigenetic variation such as DNA methylation was proposed to be one of the mechanisms involved in the memory. Here, we explored whether the experience with Ultraviolet B (UV-B) radiation triggers epigenetic memory and affects clonal plants' foraging behavior in an UV-B heterogeneous environment. Parental ramets of Glechoma longituba were exposed to UV-B radiation for 15 days or not (controls), and their offspring ramets were allowed to choose light environment enriched with UV-B or not (the species is monopodial and can only choose one environment). Sizes and epigenetic profiles (based on methylation-sensitive amplification polymorphism analysis) of parental and offspring plants from different environments were also analyzed. Parental ramets that have been exposed to UV-B radiation were smaller than ramets from control environment and produced less and smaller offspring ramets. Offspring ramets were placed more often into the control light environment (88.46% ramets) than to the UV-B light environment (11.54% ramets) when parental ramets were exposed to UV-B radiation, which is a manifestation of "escape strategy." Offspring of control parental ramets show similar preference to the two light environments. Parental ramets exposed to UV-B had lower levels of overall DNA methylation and had different epigenetic profiles than control parental ramets. The methylation of UV-B-stressed parental ramets was maintained among their offspring ramets, although the epigenetic differentiation was reduced after several asexual generations. The parental experience with the UV-B radiation strongly influenced foraging behavior. The memory on the previous environmental interaction enables clonal plants to better interact with a heterogeneous environment and the memory is at least partly based on heritable epigenetic variation.

5.
Front Plant Sci ; 12: 698878, 2021.
Article in English | MEDLINE | ID: mdl-35126402

ABSTRACT

The trait-based approaches have made progress in understanding the community assembly process. Here, we explore the key traits that may shape community assembly patterns of the same community type but within different water availabilities. Natural Quercus wutaishanica forests were chosen as a suitable study system to test the difference between economic and hydraulic traits across water availability on the Loess Plateau (LP, drought region) and Qinling Mountains (QL, humid region) of China. A total of 75 plots were established separately in two sites, and 12 functional traits (seven hydraulic traits and five economic traits) of 167 species were studied. Community-weighted mean trait values and functional diversity indices were compared between the two sites. Canonical component analysis was performed to infer whether the changes of community traits and their relationships are driven by intraspecific variation or species turnover. Evidence for likely community assembly processes was tested using the null model to determine whether functional structure among seven hydraulic traits and five economic traits was dominated by different ecological processes between two sites. We found that forests in the Loess Plateau and Qinling Mountains showed different hydraulic and economic traits. Hydraulic and economic traits coupled at the community level were driven by species turnover. Hydraulic traits showed more significant convergent patterns on LP than that in QL. Our results suggest a strong environmental filtering process occurred in hydraulic-based community assembly in the temperate forest with low water availability. Reveal the relationship of hydraulic and economic traits at the community level. Emphasize the critical role of multi-dimensional traits selecting like hydraulic traits in community ecology.

6.
Front Microbiol ; 10: 895, 2019.
Article in English | MEDLINE | ID: mdl-31105679

ABSTRACT

In the context of secondary forest succession, aboveground-belowground interactions are known to affect the dynamics and functional structure of plant communities. However, the links between soil microbial communities, soil abiotic properties, plant functional traits in the case of semi-arid and arid ecosystems, are unclear. In this study, we investigated the changes in soil microbial species diversity and community composition, and the corresponding effects of soil abiotic properties and plant functional traits, during a ≥150-year secondary forest succession on the Loess Plateau, which represents a typical semi-arid ecosystem in China. Plant community fragments were assigned to six successional stages: 1-4, 4-8, 8-15, 15-50, 50-100, and 100-150 years after abandonment. Bacterial and fungal communities were analyzed by high-throughput sequencing of the V4 hypervariable region of the 16S rRNA gene and the internal transcribed spacer (ITS2) region of the rRNA operon, respectively. A multivariate variation-partitioning approach was used to estimate the contributions of soil properties and plant traits to the observed microbial community composition. We found considerable differences in bacterial and fungal community compositions between the early (S1-S3) and later (S4-S6) successional stages. In total, 18 and 12 unique families were, respectively, obtained for bacteria and fungi, as indicators of microbial community succession across the six stages. Bacterial alpha diversity was positively correlated with plant species alpha diversity, while fungal diversity was negatively correlated with plant species diversity. Certain fungal and bacterial taxa appeared to be associated with the occurrence of dominant plant species at different successional stages. Soil properties (pH, total N, total C, NH4-N, NO3-N, and PO4-P concentrations) and plant traits explained 63.80% and 56.68% of total variance in bacterial and fungal community compositions, respectively. These results indicate that soil microbial communities are coupled with plant communities via the mediation of microbial species diversity and community composition over a long-term secondary forest succession in the semi-arid ecosystem. The bacterial and fungal communities show distinct patterns in response to plant community succession, according to both soil abiotic properties and plant functional traits.

7.
PeerJ ; 7: e5933, 2019.
Article in English | MEDLINE | ID: mdl-30643687

ABSTRACT

BACKGROUND: In the case of tall trees in the field or in rugged terrain where an instrument cannot be placed operationally, beveling is a popular method used to measure in vitro photosynthesis. However, some studies and our own research have shown that net photosynthesis values measured in vitro are generally significantly lower than values measured in situ. METHODS: To develop a more accurate and applicable method for in vitro determination of photosynthesis, we evaluated five different methods for preparing detached tree branches to measure photosynthesis and gas exchange in vitro (beveling, cracking, splitting, girdling, and immersion in salicylic acid solution). Ten common tree-species were used. RESULTS: By comparing light response curves and water-status data, we found that (1) it is possible, to some extent, to substitute in vitro measurement of photosynthetic characteristics of tree species for in situ measurement, provided a suitable treatment is employed; (2) the beveling method is likely to underestimate photosynthetic potential of some trees; (3) after cracking application, most detached branches effectively continued to absorb water; and (4) measurements obtained using detached tree-branches processed by the cracking method were closer to those obtained in situ in intact trees; (5) some tree species (Diospyros kaki, Eriobotrya japonica) appeared to be particularly sensitive to the cracking method, and their in-vitro maximum net photosynthesis rate (P max) was significantly less than the in-situ value (P < 0.05). DISCUSSION: Our findings provide a methodological support for comprehensive and accurate measurement of plant functional traits. The use of the cracking method contributes to feasibility and reliability of the measurement of photosynthetic parameters in tall trees, thus providing more accurate photosynthetic parameters for the analysis of trade-off strategies at the leaf level.

8.
Int J Mol Sci ; 19(4)2018 Apr 13.
Article in English | MEDLINE | ID: mdl-29652861

ABSTRACT

The negative effects of enhanced ultraviolet-B (UV-B) on plant growth and development have been reported with many species. Considering the ability of jasmonic acid (JA) to improve plant stress tolerance, the hypothesis that JA pretreatment could alleviate the adverse effects of UV-B on S. baicalensis was tested in this study with photosynthesis and growth characteristics. The results showed that UV-B or JA alone both induced photosynthesis inhibition and decreased biomass in stems and leaves. However, the photosynthetic reduction caused by increased UV-B was mainly related to the effect of nonstomatal-limitation, while that of JA was a stomatal-limitation effect. JA pretreatment prior to UV-B could remit the photosynthetic inhibition via the recovery of chlorophyll content, stomatal conductance; and intercellular CO2 concentration (especially the maximum electron transport rate increase). Furthermore, the coaction of JA and enhanced UV-B alleviated some disadvantageous effects on the leaf and did not aggravate the growth damage induced by their separate actions.


Subject(s)
Cyclopentanes/pharmacology , Oxylipins/pharmacology , Photosynthesis/radiation effects , Scutellaria baicalensis/growth & development , Biomass , Carbon Dioxide/chemistry , Chloroplasts/chemistry , Photosynthesis/drug effects , Plant Leaves/drug effects , Plant Leaves/growth & development , Plant Leaves/radiation effects , Plant Stems/drug effects , Plant Stems/growth & development , Plant Stems/radiation effects , Scutellaria baicalensis/chemistry , Scutellaria baicalensis/drug effects , Scutellaria baicalensis/radiation effects , Ultraviolet Rays/adverse effects
9.
Front Plant Sci ; 9: 180, 2018.
Article in English | MEDLINE | ID: mdl-29497437

ABSTRACT

Species respond to changes in their environments. A core goal in ecology is to understand the process of plant community assembly in response to a changing climate. Examining the performance of functional traits and trait-based assembly patterns across species among different growth forms is a useful way to explore the assembly process. In this study, we constructed a habitat severity gradient including several environment factors along a 2300 m wide elevational range at Taibai Mountain, central China. Then we assessed the shift on functional trait values and community assembly patterns along this gradient across species among different growth forms. We found that (1) although habitat-severity values closely covaried with elevation in this study, an examined communities along a habitat severity gradient might reveal community dynamics and species responses under future climate change. (2) the occurrence of trait values along the habitat severity gradient across different growth forms were similar, whereas the assembly pattern of herbaceous species was inconsistent with the community and woody species. (3) the trait-trait relationships of herbaceous species were dissimilar to those of the community and woody species. These results suggest that (1) community would re-assemble along habitat severity gradient through environmental filtering, regardless of any growth forms and that (2) different growth forms' species exhibiting similar trait values' shift but different trait-trait relationship by different trait combinations.

10.
Sci Total Environ ; 621: 245-252, 2018 Apr 15.
Article in English | MEDLINE | ID: mdl-29182967

ABSTRACT

Leaf economics and hydraulic traits are simultaneously involved in the process of trading water for CO2, but the relationships between these two suites of traits remain ambiguous. Recently, Li et al. (2015) reported that leaf economics and hydraulic traits were decoupled in five tropical-subtropical forests in China. We tested the hypothesis that the relationships between economics and hydraulic traits may depend on water availability. We analysed five leaf economics traits, four hydraulic traits and anatomical structures of 47 woody species on the Loess Plateau with poor water availability and compared those data with Li et al. (2015) obtained in tropical-subtropical regions with adequate water. The results showed that plants on the Loess Plateau tend to have higher leaf tissue density (TD), leaf nitrogen concentrations and venation density (VD) and lower stomatal guard cell length (SL) and maximum stomatal conductance to water vapour (gwmax). VD showed positive correlations with leaf nitrogen concentrations, palisade tissue thickness (PT) and ratio of palisade tissue thickness to spongy tissue thickness (PT/ST). Principal component analysis (PCA) showed a result opposite from those of tropical-subtropical regions: leaf economics and hydraulic traits were coupled on the Loess Plateau. A stable correlation between these two suites of traits may be more cost-effective on the Loess Plateau, where water availability is poor. The correlation of leaf economics and hydraulic traits may be a type of adaptation mechanism in arid conditions.


Subject(s)
Forests , Plant Leaves/physiology , Trees/physiology , Water/physiology , China
11.
Ecol Evol ; 7(14): 5056-5069, 2017 07.
Article in English | MEDLINE | ID: mdl-28770046

ABSTRACT

Community assembly processes is the primary focus of community ecology. Using phylogenetic-based and functional trait-based methods jointly to explore these processes along environmental gradients are useful ways to explain the change of assembly mechanisms under changing world. Our study combined these methods to test assembly processes in wide range gradients of elevation and other habitat environmental factors. We collected our data at 40 plots in Taibai Mountain, China, with more than 2,300 m altitude difference in study area and then measured traits and environmental factors. Variance partitioning was used to distinguish the main environment factors leading to phylogeny and traits change among 40 plots. Principal component analysis (PCA) was applied to colligate other environment factors. Community assembly patterns along environmental gradients based on phylogenetic and functional methods were studied for exploring assembly mechanisms. Phylogenetic signal was calculated for each community along environmental gradients in order to detect the variation of trait performance on phylogeny. Elevation showed a better explanatory power than other environment factors for phylogenetic and most traits' variance. Phylogenetic and several functional structure clustered at high elevation while some conserved traits overdispersed. Convergent tendency which might be caused by filtering or competition along elevation was detected based on functional traits. Leaf dry matter content (LDMC) and leaf nitrogen content along PCA 1 axis showed conflicting patterns comparing to patterns showed on elevation. LDMC exhibited the strongest phylogenetic signal. Only the phylogenetic signal of maximum plant height showed explicable change along environmental gradients. Synthesis. Elevation is the best environment factors for predicting phylogeny and traits change. Plant's phylogenetic and some functional structures show environmental filtering in alpine region while it shows different assembly processes in middle- and low-altitude region by different trait/phylogeny. The results highlight deterministic processes dominate community assembly in large-scale environmental gradients. Performance of phylogeny and traits along gradients may be independent with each other. The novel method for calculating functional structure which we used in this study and the focus of phylogenetic signal change along gradients may provide more useful ways to detect community assembly mechanisms.

12.
Sci Rep ; 6: 27087, 2016 06 08.
Article in English | MEDLINE | ID: mdl-27272407

ABSTRACT

Quantifying the drivers underlying the distribution of biodiversity during succession is a critical issue in ecology and conservation, and also can provide insights into the mechanisms of community assembly. Ninety plots were established in the Loess Plateau region of northern Shaanxi in China. The taxonomic and phylogenetic (alpha and beta) diversity were quantified within six succession stages. Null models were used to test whether phylogenetic distance observed differed from random expectations. Taxonomic beta diversity did not show a regular pattern, while phylogenetic beta diversity decreased throughout succession. The shrub stage occurred as a transition from phylogenetic overdispersion to clustering either for NRI (Net Relatedness Index) or betaNRI. The betaNTI (Nearest Taxon Index) values for early stages were on average phylogenetically random, but for the betaNRI analyses, these stages were phylogenetically overdispersed. Assembly of woody plants differed from that of herbaceous plants during late community succession. We suggest that deterministic and stochastic processes respectively play a role in different aspects of community phylogenetic structure for early succession stage, and that community composition of late succession stage is governed by a deterministic process. In conclusion, the long-lasting evolutionary imprints on the present-day composition of communities arrayed along the succession gradient.


Subject(s)
Forests , Quercus/physiology , Artemisia/physiology , Biodiversity , China , Conservation of Natural Resources , Phylogeny , Poaceae/physiology
13.
Oecologia ; 180(3): 771-83, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26563469

ABSTRACT

In forest succession, the ecological strategies of the dominant species that are based on functional traits are important in the determination of both the mechanisms and the potential directions of succession. Thirty-one plots were established in the Loess Plateau region of northern Shaanxi in China. Fifteen leaf traits were measured for the 31 dominant species that represented the six stages of succession, and the traits included four that were related to morphology, seven to stoichiometry and four to physiological ecology. The species from the different successional stages had different patterns of distribution of the traits, and different key traits predicted the turnover of the species during succession. The ash and the cellulose contents were key regulatory factors of species turnover in the early successional communities, and the trait niche forces in sugar and leaf dry mass content might become more important with the progression of succession. When only the three herb stages were considered, a progressive replacement of the ruderal by the competitive-ruderal species occurred in the intermediate stages of succession, which was followed by the stress-tolerant-competitive or the competitive-stress tolerant-ruderal strategists late in the succession. Thus, the different species that occurred in the different stages of succession shared different trait-based ecological strategies. Additionally, these differences occurred concomitantly with a shift toward competitive-stress tolerant-ruderal strategies.


Subject(s)
Adaptation, Physiological , Carbohydrate Metabolism , Ecology , Forests , Phenotype , Plant Leaves , Plants , Carbohydrates , Cellulose , China , Plant Physiological Phenomena , Plants/metabolism , Trees/metabolism , Trees/physiology
14.
PLoS One ; 7(11): e50822, 2012.
Article in English | MEDLINE | ID: mdl-23226393

ABSTRACT

(1) The effects of facilitation on the structure and dynamics of plant populations have not been studied so widely as competition. The UV-B radiation, as a typical environmental factor causing stress, may result in direct stress and facilitation. (2) The effects of UV-B radiation on intraspecific competition and facilitation were investigated based on the following three predictions on self-thinning, size inequality, and phenotypic plasticity: i) Self-thinning is the reduction in density that results from the increase in the mean biomass of individuals in crowded populations, and is driven by competition. In this study, the mortality rate of the population is predicted to decrease from UV-B irradiance. ii) The size inequality of a population increases with competition intensity because larger individuals receive a disproportionate share of resources, thereby leaving limited resources for smaller individuals. The second hypothesis assumes that direct stress decreases the size inequality of the population. iii) Phenotypic plasticity is the ability to alter one's morphology in response to environmental changes. The third hypothesis assumes that certain morphological indices can change among the trade-offs between competition, facilitation, and stress. These predictions were tested by conducting a field pot experiment using mung beans, and were supported by the following results: (3) UV-B radiation increased the survival rate of the population at the end of self-thinning. However, this result was mainly due to direct stress rather than facilitation. (4) Just as competitor, facilitation was also asymmetric. It increased the size inequality of populations during self-thinning, whereas stress decreased the size inequality. (5) Direct stress and facilitation influence plants differently on various scales. Stress inhibited plant growth, whereas facilitation showed the opposite on an individual scale. Stress increased survival rate, whereas facilitation increased individual variability on the population scale. (6) Trade-offs between competitions, facilitation, and direct stress varied in different growing stages.


Subject(s)
Biomass , Fabaceae/physiology , Fabaceae/radiation effects , Ultraviolet Rays , Fabaceae/anatomy & histology , Fabaceae/growth & development , Phenotype , Population Density , Population Dynamics , Seasons , Species Specificity
15.
Zhongguo Zhong Yao Za Zhi ; 37(15): 2247-51, 2012 Aug.
Article in Chinese | MEDLINE | ID: mdl-23189728

ABSTRACT

Stratospheric ozone depletion results in an increased level of solar UV-B radiation (UV-B, 280-320 nm) reaching the earth surface. By the effect of UV-B radiation, various medicinal active ingredients changed because of the change of gene expression, enzyme activity and secondary metabolism, clinical effect is also changed. The research status of UV-B radiation and the accumulation of plant secondary metabolites in the past 10 years were summarized in this paper to supply reference for cultivation and exploitation of the medicinal plants.


Subject(s)
Plant Extracts/metabolism , Plants, Medicinal/metabolism , Plants, Medicinal/radiation effects , Ecosystem , Plant Extracts/analysis , Plants, Medicinal/growth & development , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...