Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 14: 1115794, 2023.
Article in English | MEDLINE | ID: mdl-37020554

ABSTRACT

The peptidyl arginine deiminase (PADI) family is a calcium ion-dependent group of isozymes with sequence similarity that catalyze the citrullination of proteins. Histones can serve as the target substrate of PADI family isozymes, and therefore, the PADI family is involved in NETosis and the secretion of inflammatory cytokines. Thus, the PADI family is associated with the development of inflammatory autoimmune diseases and cancer, reproductive development, and other related diseases. In this review, we systematically discuss the role of the PADI family in the pathogenesis of various diseases based on studies from the past decade to provide a reference for future research.


Subject(s)
Autoimmune Diseases , Neoplasms , Humans , Protein-Arginine Deiminases/metabolism , Isoenzymes/metabolism , Histones/metabolism
2.
Oncol Rep ; 49(1)2023 01.
Article in English | MEDLINE | ID: mdl-36367181

ABSTRACT

Astragalus membranaceus Bunge is widely used in Traditional Chinese Medicine to treat various cancers. Astragaloside­IV (AS­IV) is one of the major compounds isolated from A. membranaceus Bunge and has been demonstrated to have antitumor effects by inhibiting cell proliferation, invasion and metastasis in various cancer types. Numerous studies have used in vitro cell culture and in vivo animal models of cancer to explore the antitumor activities of AS­IV. In the present study, the antitumor effects and mechanisms of AS­IV reported in studies recorded in the PubMed database were reviewed. First, the antitumor effects of AS­IV on proliferation, cell cycle, apoptosis, autophagy, invasion, migration, metastasis and epithelial­mesenchymal transition processes in cancer cells and the tumor microenvironment, including angiogenesis, tumor immunity and macrophage­related immune responses to cancer cells, were comprehensively discussed. Subsequently, the molecular mechanisms and related signaling pathways associated with antitumor effects of AS­IV as indicated by in vitro and in vivo studies were summarized, including the Wnt/AKT/GSK-3ß (glycogen synthase kinase­3ß)/ß­catenin, TGF­ß/PI3K/AKT/mTOR, PI3K/MAPK/mTOR, PI3K/AKT/NF­κB, Rac family small GTPase 1/RAS/MAPK/ERK, TNF­α/protein kinase C/ERK1/2­NF­κB and Tregs (T­regulatory cells)/IL­11/STAT3 signaling pathways. Of note, several novel mechanisms of Toll­like receptor 4 (TLR4)/NF­κB/STAT3, pSmad3C/3L, nuclear factor erythroid 2­related factor (NrF2)/heme oxygenase 1, circDLST/microRNA­489­3p/eukaryotic translation initiation factor 4A1 and macrophage­related high­mobility group box 1­TLR4 signaling pathways associated with the anticancer activity of AS­IV were also included. Finally, the limitations of current studies that must be addressed in future studies were pointed out to facilitate the establishment of AS­IV as a potent therapeutic drug in cancer treatment.


Subject(s)
Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Animals , Apoptosis , Cell Line, Tumor , Cell Proliferation , Glycogen Synthase Kinase 3 beta , NF-kappa B , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Toll-Like Receptor 4 , TOR Serine-Threonine Kinases/metabolism
3.
Mol Carcinog ; 62(3): 293-302, 2023 03.
Article in English | MEDLINE | ID: mdl-36342357

ABSTRACT

Dihydroartemisinin (DHA) has recently attracted increasing attention for its low toxicity and high antitumor activity. DHA has been reported to have synergistic anticancer effects with a variety of drugs in the clinic; however, the molecular mechanism by which DHA inhibits tumorigenesis and improves oxaliplatin cytotoxicity in colon cancer cells is still not well understood. In this study, we found that DHA can inhibit cell proliferation and colony formation in a dose-dependent manner. Prohibitin 2 (PHB2) is a potential target by which DHA exerts its antitumor and cytotoxic effects. The function and molecular mechanism of PHB2 in colon cancer tumorigenesis were fully studied to determine the regulatory mechanism between DHA and PHB2. We found that PHB2, a mitochondrial inner membrane scaffold protein, has a higher expression level in colon cancer tissues than in adjacent nontumor tissues and is mainly localized in mitochondria. Overexpression of PHB2 can promote cell proliferation and colony formation in vitro and accelerate tumor growth in vivo. We also found that the expression level of PHB2 was inversely related to the cytotoxicity of DHA and oxaliplatin in colon cancer cells. The molecular mechanism of PHB2 in tumorigenesis and cancer therapy was further studied. The results showed that 20 µM DHA can downregulate PHB2 expression in a ubiquitylation-dependent manner and subsequently block PHB2-induced RCHY1 upregulation and p53 and p21 downregulation. In this process, RCHY1 is necessary for PHB2 to play a tumor-promoting role. Thus, PHB2 and RCHY1 are effective targets for colon cancer therapy, and DHA has synergistic anticancer effects with oxaliplatin via promoting PHB2 degradation in colon cancer cells.


Subject(s)
Antineoplastic Agents , Colonic Neoplasms , Humans , Oxaliplatin/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Signal Transduction , Colonic Neoplasms/drug therapy , Carcinogenesis , Cell Line, Tumor , Ubiquitin-Protein Ligases
4.
Genet Res (Camb) ; 2022: 9282484, 2022.
Article in English | MEDLINE | ID: mdl-36101744

ABSTRACT

Sirtuin 2 (SIRT2), as a member of the sirtuin family, has representative features of evolutionarily highly conserved nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase activity. In addition, SIRT2, as the only sirtuin protein colocalized with tubulin in the cytoplasm, has its own functions and characteristics. In recent years, studies have increasingly shown that SIRT2 can participate in the regulation of gene expression and regulate signal transduction in the metabolic pathway mainly through its post-translational modification of target genes; thus, SIRT2 has become a key centre in the metabolic pathway and participates in the pathological process of metabolic disorder-related diseases. In this paper, it is discussed that SIRT2 can regulate all aspects of gene expression, including epigenetic modification, replication, transcription and translation, and post-translational modification, which enables SIRT2 to participate in energy metabolism in life activities, and it is clarified that SIRT2 is involved in metabolic process-specific signal transduction mechanisms. Therefore, SIRT2 can be involved in metabolic disorder-related inflammation and oxidative stress, thereby triggering the occurrence of metabolic disorder-related diseases, such as neurodegenerative diseases, tumours, diabetes, and cardiovascular diseases. Currently, although the role of SIRT2 in some diseases is still controversial, given the multiple roles of SIRT2 in regulating physiological and pathological signal transduction, SIRT2 has become a key target for disease treatment. It is believed that with increasing research, the clinical application of SIRT2 will be promoted.


Subject(s)
Neurodegenerative Diseases , Sirtuin 2 , Humans , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , Oxidative Stress , Protein Processing, Post-Translational/genetics , Signal Transduction/genetics , Sirtuin 2/genetics , Sirtuin 2/metabolism
5.
Front Oncol ; 12: 1055174, 2022.
Article in English | MEDLINE | ID: mdl-36620561

ABSTRACT

Background: The increasing incidence of gastrointestinal stromal tumors (GISTs) has led to the discovery of more novel prognostic markers. We aim to establish an unsupervised prognostic model for the early prediction of the prognosis of future patients with GISTs and to guide clinical treatment. Methods: We downloaded the GISTs dataset through the cBioPortal website. We extracted clinical information and pathological information, including the microsatellite instability (MSI) score, fraction genome altered (FGA) score, tumor mutational burden (TMB), and copy number alteration burden (CNAB), of patients with GISTs. For survival analysis, we used univariate Cox regression to analyze the contribution of each factor to prognosis and calculated a hazard ratio (HR) and 95% confidence interval (95% CI). For clustering groupings, we used the t-distributed stochastic neighbor embedding (t-SNE) method for data dimensionality reduction. Subsequently, the k-means method was used for clustering analysis. Results: A total of 395 individuals were included in the study. After dimensionality reduction with t-SNE, all patients were divided into two subgroups. Cluster 1 had worse OS than cluster 2 (HR=3.45, 95% CI, 2.22-5.56, P<0.001). The median MSI score of cluster 1 was 1.09, and the median MSI score of cluster 2 was 0.24, which were significantly different (P<0.001). The FGA score of cluster 1 was 0.28, which was higher than that of cluster 2 (P<0.001). In addition, both the TMB and CNAB of cluster 1 were higher than those of cluster 2, and the P values were less than 0.001. Conclusion: Based on the CNA of GISTs, patients can be divided into high-risk and low-risk groups. The high-risk group had a higher MSI score, FGA score, TMB and CNAB than the low-risk group. In addition, we established a prognostic nomogram based on the CNA and clinicopathological characteristics of patients with GISTs.

6.
Cancer Cell Int ; 19: 277, 2019.
Article in English | MEDLINE | ID: mdl-31708688

ABSTRACT

BACKGROUND: CKS1 is highly expressed in colon cancer tissues, and is essential for cancer cell proliferation. The downstream molecular mechanism of CKS1 has been fully studied, but the upstream regulatory mechanism of it is still unclear. Earlier research found that PADI3 plays its anti-tumor roles via suppress cell proliferation, in this study, we found that the expression pattern of PADI3 and CKS1 are negatively correlated in colon cancer tissues, and overexpression of PADI3 can partly reverse CKS1 induced cancer cell proliferation. However, the regulatory mechanism of PADI3 and CKS1 in the tumorigenesis of colon cancer is still unclear and need to do further research. METHODS: Western blot and real-time PCR were used to detect the expression levels of genes. CCK-8 and colony formation assays were used to examine cell proliferation and colony formation ability. Overexpression and rescue experiments were used to study the molecular mechanism of CKS1 in colon cancer cells, BALB/c nude mice were used to study the function of CKS1 in vivo. RESULTS: CKS1 is highly expressed in colon cancer tissues, and the overexpression of CKS1 promotes cell proliferation and colony formation in both HCT116 (originating from primary colon cancer) and SW620 (originating from metastatic tumor nodules of colon cancer) cells. CKS1-expressing HCT116 cells produced larger tumors than the control cells. The expression pattern of PADI3 and CKS1 are negatively correlation in clinical samples of colon cancer, further study indicates that PADI3 can significantly decrease Hsp90 and CKS1 expression, and Hsp90 is essential for PADI3 to downregulate CKS1expression in colon cancer cells. CONCLUSIONS: PADI3 exerts its antitumor activity by inhibiting Hsp90 and CKS1 expression, and Hsp90 is essential for PADI3 to suppress CKS1 expression.

7.
Cancer Biol Med ; 16(4): 729-742, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31908891

ABSTRACT

OBJECTIVE: As a member of the peptidyl arginine deiminase (PAD) family, PADI3 is weakly expressed in colon cancer tissues and highly expressed in adjacent colon cancer tissues. However, the role of PADI3 in colon cancer is unclear. In this study, we investigated the function and molecular mechanism of PADI3 in colon cancer tumorigenesis. METHODS: Western blot and real-time PCR were used to detect the expression levels of several genes. CCK-8, flow cytometry (FCM) and colony formation assays were used to examine cell proliferation, the cell cycle and colony formation ability. RNA-sequencing analysis was used to study the molecular mechanism of PADI3 in tumorigenesis. A truncation mutation experiment was performed to determine the key functional domain of PADI3. RESULTS: PADI3 overexpression inhibited cell proliferation and colony formation and led to G1 phase arrest in both HCT116 (originating from primary colon cancer) and LoVo (originating from metastatic tumor nodules of colon cancer) cells. PADI3-expressing HCT116 cells had a lower tumor formation rate and produced smaller tumors than control cells. PADI3 significantly decreased Sirtuin2 (Sirt2) and Snail expression and AKT phosphorylation and increased p21 expression, and Sirt2 overexpression partly reversed the effects induced by PADI3 overexpression. Immunocytochemistry showed that PADI3 is mainly localized in the cytoplasm. Truncation mutation experiments showed that the C-domain is the key domain involved in the antitumor activity of PADI3. CONCLUSIONS: PADI3 suppresses Snail expression and AKT phosphorylation and promotes p21 expression by downregulating Sirt2 expression in the cytoplasm, and the C-domain is the key domain for its antitumor activity.

8.
Clin Lab ; 60(5): 859-62, 2014.
Article in English | MEDLINE | ID: mdl-24839832

ABSTRACT

BACKGROUND: X-linked agammaglobulinemia (XLA) is a heritable primary immune deficiency disorder caused by mutation of Bruton's tyrosine kinase (BTK) gene. The main clinical characteristics of XLA are recurrent respiratory tract infections and profoundly low serum immunoglobulin levels and B cells. METHODS: The clinical characteristics of a five-year-old Chinese boy with XLA were described. Mutations of BTK genes were identified by traditional DNA sequencing based on PCR. A three-dimensional model of the truncated BTK protein was constructed. RESULTS: Molecular analysis showed a point deletion of an adenine nucleotide at position 1427 (p.Tyr476Ser), which would cause a frameshift and premature termination at codon 484. Three-dimensional analysis showed that the truncated protein had lost the functional region for both ATP and substrate binding such that tyrosine kinase activity would be affected. CONCLUSIONS: The study identified a novel BTK mutation of one Chinese XLA patient. The truncated BTK model identified the loss of a functional domain.


Subject(s)
Agammaglobulinemia/genetics , Genetic Diseases, X-Linked/genetics , Protein-Tyrosine Kinases/genetics , Sequence Deletion , Agammaglobulinaemia Tyrosine Kinase , Child, Preschool , China , Codon, Nonsense , Frameshift Mutation , Humans , Male , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...