Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 132(6): 060601, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38394571

ABSTRACT

Quantum systems usually feature a rich multilevel structure with promising resources for developing superior quantum technologies compared with their binary counterpart. Single-shot readout of these high-dimensional quantum systems is essential for exploiting their potential. Although there have been various high-spin systems, the single-shot readout of the overall state of high-spin systems remains a challenging issue. Here we demonstrate a reliable single-shot readout of spin qutrit state in a low-temperature solid-state system utilizing a binary readout scheme. We achieve a single-shot readout of an electron spin qutrit associated with a single nitrogen-vacancy center in diamond with an average fidelity of 87.80%. We use this spin qutrit system to verify quantum contextuality, a fundamental test of quantum mechanics. We observe a violation of the noncontextual hidden variable inequality with the developed single-shot readout in contrast to the conventional binary readout. These results pave the way for developing quantum information processing based on spin qutrits.

2.
Phys Rev Lett ; 128(9): 090602, 2022 Mar 04.
Article in English | MEDLINE | ID: mdl-35302812

ABSTRACT

Following the rising interest in quantum information science, the extension of a heat engine to the quantum regime by exploring microscopic quantum systems has seen a boon of interest in the last decade. Although quantum coherence in the quantum system of the working medium has been investigated to play a nontrivial role, a complete understanding of the intrinsic quantum advantage of quantum heat engines remains elusive. We experimentally demonstrate that the quantum correlation between the working medium and the thermal bath is critical for the quantum advantage of a quantum Szilárd engine, where quantum coherence in the working medium is naturally excluded. By quantifying the nonclassical correlation through quantum steering, we reveal that the heat engine is quantum when the demon can truly steer the working medium. The average work obtained by taking different ways of work extraction on the working medium can be used to verify the real quantum Szilárd engine.

3.
Sci Adv ; 7(34)2021 Aug.
Article in English | MEDLINE | ID: mdl-34407942

ABSTRACT

Principal component analysis (PCA) has been widely adopted to reduce the dimension of data while preserving the information. The quantum version of PCA (qPCA) can be used to analyze an unknown low-rank density matrix by rapidly revealing the principal components of it, i.e., the eigenvectors of the density matrix with the largest eigenvalues. However, because of the substantial resource requirement, its experimental implementation remains challenging. Here, we develop a resonant analysis algorithm with minimal resource for ancillary qubits, in which only one frequency-scanning probe qubit is required to extract the principal components. In the experiment, we demonstrate the distillation of the first principal component of a 4 × 4 density matrix, with an efficiency of 86.0% and a fidelity of 0.90. This work shows the speedup ability of quantum algorithm in dimension reduction of data and thus could be used as part of quantum artificial intelligence algorithms in the future.

4.
Phys Rev Lett ; 125(2): 020504, 2020 Jul 10.
Article in English | MEDLINE | ID: mdl-32701334

ABSTRACT

Quantum simulation, as a state-of-the-art technique, provides a powerful way to explore topological quantum phases beyond natural limits. Nevertheless, it is usually hard to simulate both the bulk and surface topological physics at the same time to reveal their correspondence. Here we build up a quantum simulator using nitrogen-vacancy center to investigate a three-dimensional (3D) chiral topological insulator, and demonstrate the study of both the bulk and surface topological physics by quantum quenches. First, a dynamical bulk-surface correspondence in momentum space is observed, showing that the bulk topology of the 3D phase uniquely corresponds to the nontrivial quench dynamics emerging on 2D momentum hypersurfaces called band inversion surfaces (BISs). This is the momentum-space counterpart of the bulk-boundary correspondence in real space. Further, the symmetry protection of the 3D chiral phase is uncovered by measuring dynamical spin textures on BISs, which exhibit perfect (broken) topology when the chiral symmetry is preserved (broken). Finally, we measure the topological charges to characterize directly the bulk topology and identify an emergent dynamical topological transition when varying the quenches from deep to shallow regimes. This work demonstrates how a full study of topological phases can be achieved in quantum simulators.

SELECTION OF CITATIONS
SEARCH DETAIL
...