Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 935: 173017, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-38719054

ABSTRACT

Carriers have been extensively employed to enhance nitrification performance during low-strength wastewater treatment by retaining slow-growing ammonia oxidizing microorganisms (AOMs). Still, there is a dearth of systematic understanding of biofilm properties and microbial community structure formed on different carriers. In this study, hydrophilic polyurethane foam (PUF) carriers were prepared and compared with five widely used commercial carriers, namely Kaldness 3, Biochip, activated carbon, volcanic rock, and zeolite. The results indicated that the biofilms formed on carriers enhanced microbial ammonia oxidation activity. Additionally, the biofilm developed on the PUF demonstrated the most superior performance among all selected carriers, not only exhibiting the highest abundant and the most active AOMs, with amoA gene abundance of 1.41 × 1013 copies/m3 and specific ammonia oxidation rate of 9.84 g NH4+-N/(m3 × h), but also possessing a compact structure, with 3.41 kg VSS/m3 and 46.83 mg extracellular polymeric substances/g VSS. The high-throughput sequencing analysis revealed that the comammox (CMX) Nitrospira dominated on biofilm due to the intrinsically low apparent half-saturation constant for substrate. A unique ecological community structure was established on PUF, characterized by low species diversity and high homogeneity in alignment with community characteristics of CMX. The biofilms on PUF contributed to the proliferation of CMX Nitrospira dominated by Nitrospira nitrosa, achieving the highest proportion among colonial three AOMs at 86.58 %. The appropriate average pore size, superior hydrophilicity, and large specific surface area of PUF carriers provided a robust foundation for the exceptional ammonia oxidation performance of the formed biofilms.


Subject(s)
Ammonia , Biofilms , Oxidation-Reduction , Polyurethanes , Waste Disposal, Fluid , Wastewater , Ammonia/metabolism , Waste Disposal, Fluid/methods , Wastewater/chemistry , Wastewater/microbiology , Hydrophobic and Hydrophilic Interactions , Nitrification
2.
Water Res ; 236: 119931, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37045640

ABSTRACT

The recent discovery of complete ammonia oxidation (comammox) bacteria has fundamentally upended the traditional two-step nitrification conception, but their functional importance in wastewater treatment plants (WWTPs) is still poorly understood. This study investigated distributions of comammox Nitrospira, ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) in activated sludge samples collected from 25 full-scale WWTPs. Using quantitative PCR (qPCR) and 16S rRNA gene amplicon sequencing, our results revealed that comammox Nitrospira ubiquitously occurred in all of 25 WWTPs and even outnumbered AOB and AOA with an average abundance of 1∼183 orders of magnitude higher in 19 WWTPs. Moreover, DNA-based stable isotope probing (DNA-SIP) assays validated that comammox Nitrospira actively participated in ammonia oxidation in the three microcosms seeding with activated sludge from three typical WWTPs, in which the ratios of comammox amoA to AOB amoA were at the range of 1∼10, 10∼100 and >100, respectively. Phylogenetic analysis in heavy fractions further indicated that Nitrospira nitrosa (N. nitrosa) was the dominant and active species. We quantified the contribution of ammonia oxidizers based on the currently available kinetic parameters of the representative species and found that comammox made major contributions to ammonia oxidation than other nitrifiers (5 ∼ 106 times that of AOB). The findings not only demonstrate the ubiquitous occurrence of comammox, but also highlight their functional dominance in ammonia oxidation in WWTPs.


Subject(s)
Sewage , Water Purification , Ammonia , Phylogeny , RNA, Ribosomal, 16S/genetics , Oxidation-Reduction , Bacteria/genetics , Archaea/genetics , Nitrification , DNA
3.
Sci Bull (Beijing) ; 66(19): 1994-2001, 2021 10 15.
Article in English | MEDLINE | ID: mdl-36654169

ABSTRACT

Uranium extraction from seawater is of strategic significance for nuclear power generation. Amidoxime-based functional adsorbents play indispensable roles in the recovery of seawater uranium with high efficiency. Nevertheless, balancing the adsorption capacity and selectivity is challenging in the presence of complicated interfering ions especially vanadium. Herein, a polyarylether-based covalent organic framework functionalized with open-chain amidoxime (COF-HHTF-AO) was synthesized with remarkable chemical stability and excellent crystallinity. Impressively, the adsorption capacity of COF-HHTF-AO towards uranium in natural seawater reached up to 5.12 mg/g, which is 1.61 times higher than that for vanadium. Detailed computational calculations revealed that the higher selectivity for uranium over vanadium originated from the specific bonding nature and coordination pattern with amidoxime. Combining enhanced adsorption capacity, excellent selectivity and ultrahigh stability, COF-HHTF-AO serves as a promising adsorbent for uranium extraction from the natural seawater.


Subject(s)
Metal-Organic Frameworks , Uranium , Vanadium , Seawater
SELECTION OF CITATIONS
SEARCH DETAIL
...