Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 7(1): 17734, 2017 12 18.
Article in English | MEDLINE | ID: mdl-29255167

ABSTRACT

This work examines the stability of epitaxial 3C-SiC/Si heterojunctions subjected to heat treatments between 1000 °C and 1300 °C. Because of the potential for silicon carbide in high temperature and harsh environment applications, and the economic advantages of growing the 3C-SiC polytype on large diameter silicon wafers, its stability after high temperature processing is an important consideration. Yet recently, this has been thrown into question by claims that the heterojunction suffers catastrophic degradation at temperatures above 1000 °C. Here we present results showing that the heterojunction maintains excellent diode characteristics following heat treatment up to 1100 °C and while some changes were observed between 1100 °C and 1300 °C, diodes maintained their rectifying characteristics, enabling compatibility with a large range of device fabrication. The parameters of as-grown diodes were J0 = 1 × 10-11 A/mm2, n = 1.02, and +/-2V rectification ratio of 9 × 106. Capacitance and thermal current-voltage analysis was used to characterize the excess current leakage mechanism. The change in diode characteristics depends on diode area, with larger areas (1 mm2) having reduced rectification ratio while smaller areas (0.04 mm2) maintained excellent characteristics of J0 = 2 × 10-10 A/mm2, n = 1.28, and +/-2V ratio of 3 × 106. This points to localized defect regions degrading after heat treatment rather than a fundamental issue of the heterojunction.

2.
Sci Rep ; 5: 17811, 2015 Dec 04.
Article in English | MEDLINE | ID: mdl-26634813

ABSTRACT

Using a combination of low-pressure oxygen and high temperatures, isotropic and anisotropic silicon (Si) etch rates can be controlled up to ten micron per minute. By varying the process conditions, we show that the vertical-to-lateral etch rate ratio can be controlled from 1:1 isotropic etch to 1.8:1 anisotropic. This simple Si etching technique combines the main respective advantages of both wet and dry Si etching techniques such as fast Si etch rate, stiction-free, and high etch rate uniformity across a wafer. In addition, this alternative O2-based Si etching technique has additional advantages not commonly associated with dry etchants such as avoiding the use of halogens and has no toxic by-products, which improves safety and simplifies waste disposal. Furthermore, this process also exhibits very high selectivity (>1000:1) with conventional hard masks such as silicon carbide, silicon dioxide and silicon nitride, enabling deep Si etching. In these initial studies, etch rates as high as 9.2 µm/min could be achieved at 1150 °C. Empirical estimation for the calculation of the etch rate as a function of the feature size and oxygen flow rate are presented and used as proof of concepts.

SELECTION OF CITATIONS
SEARCH DETAIL
...