Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Obes (Lond) ; 44(1): 178-185, 2020 01.
Article in English | MEDLINE | ID: mdl-31201362

ABSTRACT

BACKGROUND/OBJECTIVES: Hypothalamic neurons play a major role in the control of body mass. Obese subjects present radiologic signs of gliosis in the hypothalamus, which may reflect the damage or loss of neurons involved in whole-body energy homeostasis. It is currently unknown if hypothalamic gliosis (1) differs between obese nondiabetic (ND) and obese diabetic subjects (T2D) or (2) is modified by extensive body mass reduction via Roux-n-Y gastric bypass (RYGB). SUBJECTS/METHODS: Fifty-five subjects (all female) including lean controls (CT; n = 13), ND (n = 28), and T2D (n = 14) completed at least one study visit. Subjects underwent anthropometrics and a multi-echo MRI sequence to measure mean bilateral T2 relaxation time in the mediobasal hypothalamus (MBH) and two reference regions (amygdala and putamen). The obese groups underwent RYGB and were re-evaluated 9 months later. Analyses were by linear mixed models. RESULTS: Analyses of T2 relaxation time at baseline showed a group by region interaction only in the MBH (P < 0.0001). T2D had longer T2 relaxation times compared to either CT or ND groups. To examine the effects of RYGB on hypothalamic gliosis a three-way (group by region by time) mixed effects model adjusted for age was executed. Group by region (P < 0.0001) and region by time (P = 0.0005) interactions were significant. There was a reduction in MBH relaxation time by RYGB, and, although the T2D group still had higher T2 relaxation time overall compared to the ND group, the T2D group had significantly lower T2 relaxation time after surgery and the ND group showed a trend. The degree of reduction in MBH T2 relaxation time by RYGB was unrelated to clinical outcomes. CONCLUSION: T2 relaxation times, a marker of hypothalamic gliosis, are higher in obese women with T2D and are reduced by RYGB-induced weight loss.


Subject(s)
Bariatric Surgery , Diabetes Mellitus, Type 2/complications , Gliosis , Hypothalamus , Obesity , Female , Gliosis/diagnostic imaging , Gliosis/pathology , Humans , Hypothalamus/diagnostic imaging , Hypothalamus/pathology , Magnetic Resonance Imaging , Obesity/complications , Obesity/surgery , Treatment Outcome
2.
Diabetes ; 60(6): 1699-704, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21515852

ABSTRACT

OBJECTIVE: Inflammation and dysfunction of the hypothalamus are common features of experimental obesity. However, it is unknown whether obesity and massive loss of body mass can modify the immunologic status or the functional activity of the human brain. Therefore, the aim of this study was to determine the effect of body mass reduction on brain functionality. RESEARCH DESIGN AND METHODS: In humans, changes in hypothalamic activity after a meal or glucose intake can be detected by functional magnetic resonance imaging (fMRI). Distinct fMRI analytic methods have been developed to explore changes in the brain's activity in several physiologic and pathologic conditions. We used two analytic methods of fMRI to explore the changes in the brain activity after body mass reduction. RESULTS: Obese patients present distinct functional activity patterns in selected brain regions compared with lean subjects. On massive loss of body mass, after bariatric surgery, increases in the cerebrospinal fluid (CSF) concentrations of interleukin (IL)-10 and IL-6 are accompanied by changes in fMRI patterns, particularly in the hypothalamus. CONCLUSIONS: Massive reduction of body mass promotes a partial reversal of hypothalamic dysfunction and increases anti-inflammatory activity in the CSF.


Subject(s)
Brain/physiology , Hypothalamus/physiopathology , Obesity/metabolism , Obesity/surgery , Adolescent , Adult , Bariatric Surgery , Brain/metabolism , Female , Humans , Hypothalamus/metabolism , Hypothalamus/physiology , Interleukin-10/cerebrospinal fluid , Interleukin-6/cerebrospinal fluid , Magnetic Resonance Imaging , Male , Middle Aged , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...