Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
J Shoulder Elbow Surg ; 29(7): e253-e268, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32113865

ABSTRACT

BACKGROUND: During anatomic total shoulder arthroplasty (TSA) for primary glenohumeral osteoarthritis (GHOA), the anterior shoulder joint capsule (ASJC) is characterized grossly by contracture, synovitis, and fibrosis. In tissues that develop fibrosis, there is substantial cross-talk between macrophages, fibroblasts, and myofibroblasts, modulated by calcium signaling and transient receptor potential (TRP) channel signaling. The purpose of this study was to compare and characterize the degree of synovitis, inflammatory infiltrate, and TRP channel expression in ASJC harvested from shoulders with and without primary GHOA. METHODS: The ASJC was resected from patients undergoing TSA for primary GHOA or other diagnoses and compared with ASJC from cadaveric donors with no history of shoulder pathology. ASJC was evaluated by immunohistochemistry to characterize synovial lining and capsular inflammatory cell infiltrate and fibrosis, and to evaluate for expression of TRPA1, TRPV1, and TRPV4, known to be involved in fibrosis in other tissues. Blinded sections were evaluated by 3 graders using a semiquantitative scale; then results were compared between diagnosis groups using nonparametric methods. RESULTS: Compared with normal control, the ASJC in primary GHOA had significantly increased synovitis, fibrosis, mixed inflammatory cell infiltrate including multiple macrophages subsets, and upregulation of TRP channel expression. CONCLUSION: These data support the clinical findings of ASJC and synovial fibrosis in primary GHOA, identify a mixed inflammatory response, and identify dysregulation of TRP channels in the synovium and joint capsule. Further studies will identify the role of synovial and capsular fibrosis early in the development of GHOA.


Subject(s)
Contracture/etiology , Joint Capsule/metabolism , Osteoarthritis/metabolism , Shoulder Joint/metabolism , Transient Receptor Potential Channels/metabolism , Adult , Arthroplasty, Replacement, Shoulder , Contracture/metabolism , Contracture/surgery , Female , Fibrosis , Humans , Immunohistochemistry , Joint Capsule/surgery , Male , Middle Aged , Osteoarthritis/complications , Osteoarthritis/surgery , Shoulder Joint/surgery , Synovial Membrane/pathology , Up-Regulation
3.
Tech Orthop ; 31(2): 91-97, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27346922

ABSTRACT

Rotator cuff tears continue to be at significant risk for re-tear or for failure to heal after surgical repair despite the use of a variety of surgical techniques and augmentation devices. Therefore, there is a need for functionalized scaffold strategies to provide sustained mechanical augmentation during the critical first 12-weeks following repair, and to enhance the healing potential of the repaired tendon and tendon-bone interface. Tissue engineered approaches that combine the use of scaffolds, cells, and bioactive molecules towards promising new solutions for rotator cuff repair are reviewed. The ideal scaffold should have adequate initial mechanical properties, be slowly degrading or non-degradable, have non-toxic degradation products, enhance cell growth, infiltration and differentiation, promote regeneration of the tendon-bone interface, be biocompatible and have excellent suture retention and handling properties. Scaffolds that closely match the inhomogeneity and non-linearity of the native rotator cuff may significantly advance the field. While substantial pre-clinical work remains to be done, continued progress in overcoming current tissue engineering challenges should allow for successful clinical translation.

4.
Acta Biomater ; 24: 117-26, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26079676

ABSTRACT

The rotator cuff consists of several tendons and muscles that provide stability and force transmission in the shoulder joint. Whereas most rotator cuff tears are amenable to suture repair, the overall success rate of repair is low, and massive tears are prone to re-tear. Extracellular matrix (ECM) patches are used to augment suture repair, but they have limitations. Tissue-engineered approaches provide a promising solution for massive rotator cuff tears. Previous studies have shown that, compared to nonaligned scaffolds, aligned electrospun polymer scaffolds exhibit greater anisotropy and exert a greater tenogenic effect. Nevertheless, achieving rapid cell infiltration through the full thickness of the scaffold is challenging, and scaling to a translationally relevant size may be difficult. Our goal was to evaluate whether a novel method of alignment, combining a multilayered electrospinning technique with a hybrid of several electrospinning alignment techniques, would permit cell infiltration and collagen deposition through the thickness of poly(ε-caprolactone) scaffolds following seeding with human adipose-derived stem cells. Furthermore, we evaluated whether multilayered aligned scaffolds enhanced collagen alignment, tendon-related gene expression, and mechanical properties compared to multilayered nonaligned scaffolds. Both aligned and nonaligned multilayered scaffolds demonstrated cell infiltration and ECM deposition through the full thickness of the scaffold after only 28days of culture. Aligned scaffolds displayed significantly increased expression of tenomodulin compared to nonaligned scaffolds and exhibited aligned collagen fibrils throughout the full thickness, the presence of which may account for the increased yield stress and Young's modulus of cell-seeded aligned scaffolds along the axis of fiber alignment. STATEMENT OF SIGNIFICANCE: Rotator cuff tears are an important clinical problem in the shoulder, with over 300,000 surgical repairs performed annually. Re-tear rates may be high, and current methods used to augment surgical repair have limited evidence to support their clinical use due to inadequate initial mechanical properties and slow cellular infiltration. Tissue engineering approaches such as electrospinning have shown similar challenges in previous studies. In this study, a novel technique to align electrospun fibers while using a multilayered approach demonstrated increased mechanical properties and development of aligned collagen through the full thickness of the scaffolds compared to nonaligned multilayered scaffolds, and both types of scaffolds demonstrated rapid cell infiltration through the full thickness of the scaffold.


Subject(s)
Adipose Tissue/metabolism , Extracellular Matrix/chemistry , Polyesters/chemistry , Rotator Cuff , Stem Cells/metabolism , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Adipose Tissue/cytology , Cells, Cultured , Humans , Stem Cells/cytology
5.
Tissue Eng Part A ; 19(23-24): 2594-604, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23808760

ABSTRACT

Full-thickness rotator cuff tears are one of the most common causes of shoulder pain in people over the age of 65. High retear rates and poor functional outcomes are common after surgical repair, and currently available extracellular matrix scaffold patches have limited abilities to enhance new tendon formation. In this regard, tissue-engineered scaffolds may provide a means to improve repair of rotator cuff tears. Electrospinning provides a versatile method for creating nanofibrous scaffolds with controlled architectures, but several challenges remain in its application to tissue engineering, such as cell infiltration through the full thickness of the scaffold as well as control of cell growth and differentiation. Previous studies have shown that ligament-derived extracellular matrix may enhance differentiation toward a tendon or ligament phenotype by human adipose stem cells (hASCs). In this study, we investigated the use of tendon-derived extracellular matrix (TDM)-coated electrospun multilayered scaffolds compared to fibronectin (FN) or phosphate-buffered saline (PBS) coating for use in rotator cuff tendon tissue engineering. Multilayered poly(ɛ-caprolactone) scaffolds were prepared by sequentially collecting electrospun layers onto the surface of a grounded saline solution into a single scaffold. Scaffolds were then coated with TDM, FN, or PBS and seeded with hASCs. Scaffolds were maintained without exogenous growth factors for 28 days in culture and evaluated for protein content (by immunofluorescence and biochemical assay), markers of tendon differentiation, and tensile mechanical properties. The collagen content was greatest by day 28 in TDM-scaffolds. Gene expression of type I collagen, decorin, and tenascin C increased over time, with no effect of scaffold coating. Sulfated glycosaminoglycan and dsDNA contents increased over time in culture, but there was no effect of scaffold coating. The Young's modulus did not change over time, but yield strain increased with time in culture. Histology demonstrated cell infiltration through the full thickness of all scaffolds and immunofluorescence demonstrated greater expression of type I, but not type III collagen through the full thickness of the scaffold in TDM-scaffolds compared to other treatment groups. Together, these data suggest that nonaligned multilayered electrospun scaffolds permit tenogenic differentiation by hASCs and that TDM may promote some aspects of this differentiation.


Subject(s)
Adipocytes , Extracellular Matrix/chemistry , Polyesters/chemistry , Rotator Cuff , Stem Cells , Tissue Engineering , Adipocytes/cytology , Adipocytes/metabolism , Adult , Animals , Cell Differentiation , Collagen Type I/biosynthesis , Collagen Type II/biosynthesis , Female , Gene Expression Regulation , Humans , Middle Aged , Rotator Cuff/cytology , Rotator Cuff/metabolism , Stem Cells/cytology , Stem Cells/metabolism , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...