Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
Add more filters










Publication year range
1.
Osteoarthr Cartil Open ; 3(2): 100147, 2021 Jun.
Article in English | MEDLINE | ID: mdl-36474981

ABSTRACT

Objective: The histopathologic wear patterns in glenohumeral osteoarthritis (GOA) have not been described. The aims of the study were to a) describe the histopathology of humeral head wear patterns in patients with end-stage GOA and b) identify clinical and radiographic parameters that correlate with observed histopathological wear patterns. Methods: Eighteen humeral heads from patients undergoing anatomic total shoulder arthroplasty for end-stage osteoarthritis were divided radially into eight wedge-shaped zones. Each zone was subdivided into central and peripheral regions. Histologic analysis included measurements of cartilage and subchondral bone plate thickness, subchondral bone area, and cartilage structure was scored using the Osteoarthritis Research Society (OARSI) and modified Mankin systems. Clinical variables including patient history, physical exam, functional evaluation, and radiographic assessments were evaluated for correlations with humeral head characteristics. Results: Overall, humeral heads demonstrated a pattern of central and inferior cartilage damage, loss, and subchondral bone changes. However, within the group, composite maps of individual patient wear patterns demonstrated a sub-group of patients with a more focal inferior cartilage lesion. Overall, these more focal inferior lesions were associated with greater pre-operative range of motion (in both upper extremities), higher pre-operative SANE and ASES scores, female sex, non-dominant extremity, concentric wear patterns, and smaller inferior osteophytes. Conclusion: Humeral head cartilage wear patterns in GOA include central and inferior cartilage damage and loss. A histopathological distinction was identified between patients with more focal versus diffuse wear, which may manifest clinically with preservation of function and range of motion, and with less profound radiographical changes.

2.
Phys Rev Lett ; 119(19): 196402, 2017 Nov 10.
Article in English | MEDLINE | ID: mdl-29219525

ABSTRACT

We carried out temperature-dependent (20-550 K) measurements of resonant inelastic x-ray scattering on LaCoO_{3} to investigate the evolution of its electronic structure across the spin-state crossover. In combination with charge-transfer multiplet calculations, we accurately quantified the renomalized crystal-field excitation energies and spin-state populations. We show that the screening of the effective on-site Coulomb interaction of 3d electrons is orbital selective and coupled to the spin-state crossover in LaCoO_{3}. The results establish that the gradual spin-state crossover is associated with a relative change of Coulomb energy versus bandwidth, leading to a Mott-type insulator-to-metal transition.

3.
Phys Rev Lett ; 119(5): 057001, 2017 Aug 04.
Article in English | MEDLINE | ID: mdl-28949729

ABSTRACT

We study the electronic structure of HgBa_{2}Ca_{2}Cu_{3}O_{8+δ} (Hg1223; T_{c}=134 K) using photoemission spectroscopy (PES) and x-ray absorption spectroscopy (XAS). Resonant valence band PES across the O K edge and Cu L edge identifies correlation satellites originating in O 2p and Cu 3d two-hole final states, respectively. Analyses using the experimental O 2p and Cu 3d partial density of states show quantitatively different on-site Coulomb energy for the Cu site (U_{dd}=6.5±0.5 eV) and O site (U_{pp}=1.0±0.5 eV). Cu_{2}O_{7}-cluster calculations with nonlocal screening explain the Cu 2p core level PES and Cu L-edge XAS spectra, confirm the U_{dd} and U_{pp} values, and provide evidence for the Zhang-Rice singlet state in Hg1223. In contrast to other hole-doped cuprates and 3d-transition metal oxides, the present results indicate weakly correlated oxygen holes in Hg1223.

4.
Nat Commun ; 8: 15929, 2017 06 29.
Article in English | MEDLINE | ID: mdl-28660878

ABSTRACT

The first known magnetic mineral, magnetite, has unusual properties, which have fascinated mankind for centuries; it undergoes the Verwey transition around 120 K with an abrupt change in structure and electrical conductivity. The mechanism of the Verwey transition, however, remains contentious. Here we use resonant inelastic X-ray scattering over a wide temperature range across the Verwey transition to identify and separate out the magnetic excitations derived from nominal Fe2+ and Fe3+ states. Comparison of the experimental results with crystal-field multiplet calculations shows that the spin-orbital dd excitons of the Fe2+ sites arise from a tetragonal Jahn-Teller active polaronic distortion of the Fe2+O6 octahedra. These low-energy excitations, which get weakened for temperatures above 350 K but persist at least up to 550 K, are distinct from optical excitations and are best explained as magnetic polarons.

5.
Phys Rev Lett ; 115(25): 256405, 2015 Dec 18.
Article in English | MEDLINE | ID: mdl-26722935

ABSTRACT

We study the electronic structure of bulk single crystals and epitaxial films of Fe_{3}O_{4}. Fe 2p core level spectra show clear differences between hard x-ray (HAX) and soft x-ray photoemission spectroscopy (PES). The bulk-sensitive spectra exhibit temperature (T) dependence across the Verwey transition, which is missing in the surface-sensitive spectra. By using an extended impurity Anderson full-multiplet model-and in contrast to an earlier peak assignment-we show that the two distinct Fe species (A and B site) and the charge modulation at the B site are responsible for the newly found double peaks in the main peak above T_{V} and its T-dependent evolution. The Fe 2p HAXPES spectra show a clear magnetic circular dichroism (MCD) in the metallic phase of magnetized 100-nm-thick films. The model calculations also reproduce the MCD and identify the contributions from magnetically distinct A and B sites. Valence band HAXPES shows a finite density of states at E_{F} for the polaronic half metal with a remnant order above T_{V} and a clear gap formation below T_{V}. The results indicate that the Verwey transition is driven by changes in the strongly correlated and magnetically active B-site electronic states, consistent with resistivity and optical spectra.

6.
Nat Mater ; 13(6): 611-8, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24705382

ABSTRACT

Resonant X-ray diffraction (RXD) uses X-rays in the vicinity of a specific atomic absorption edge and is a powerful technique for studying symmetry breaking by motifs of various multipole moments, such as electric monopoles (charge), magnetic dipoles (spin) and electric quadrupoles (orbital). Using circularly polarized X-rays, this technique has been developed to verify symmetry breaking effects arising from chirality, the asymmetry of an object upon its mirroring. Chirality plays a crucial role in the emergence of functionalities such as optical rotatory power and multiferroicity. Here we apply spatially resolved RXD to reveal the helix chirality of Dy 4f electric quadrupole orientations and its domain structure in DyFe3(BO3)4, which shows a reversible phase transition into an enantiomorphic space-group pair. The present study provides evidence for a helix chiral motif of quadrupole moments developed in crystallographic helix chirality.

7.
Sci Rep ; 4: 4109, 2014 Feb 28.
Article in English | MEDLINE | ID: mdl-24576851

ABSTRACT

Conventional superconductivity follows Bardeen-Cooper-Schrieffer(BCS) theory of electrons-pairing in momentum-space, while superfluidity is the Bose-Einstein condensation(BEC) of atoms paired in real-space. These properties of solid metals and ultra-cold gases, respectively, are connected by the BCS-BEC crossover. Here we investigate the band dispersions in FeTe(0.6)Se(0.4)(Tc = 14.5 K ~ 1.2 meV) in an accessible range below and above the Fermi level(EF) using ultra-high resolution laser angle-resolved photoemission spectroscopy. We uncover an electron band lying just 0.7 meV (~8 K) above EF at the Γ-point, which shows a sharp superconducting coherence peak with gap formation below Tc. The estimated superconducting gap Δ and Fermi energy [Symbol: see text]F indicate composite superconductivity in an iron-based superconductor, consisting of strong-coupling BEC in the electron band and weak-coupling BCS-like superconductivity in the hole band. The study identifies the possible route to BCS-BEC superconductivity.

8.
Phys Rev Lett ; 111(21): 217001, 2013 Nov 22.
Article in English | MEDLINE | ID: mdl-24313517

ABSTRACT

We performed temperature dependent x-ray linear dichroism (XLD) experiments on an iron pnictide system, Ba(Fe(1-x)Co(x))2As2 with x=0.00, 0.05, 0.08, and 0.10 to experimentally verify the existence of orbital ordering (OO). Substantial XLD was observed in polarization dependent x-ray absorption spectra of Fe L edges. By exploiting the difference in the temperature dependent behaviors, OO, and structure contributions to XLD could be clearly separated. The observed OO signal indicates different occupation numbers for d(yz) and d(zx) orbitals and supports the existence of ferro-OO. The results are also consistent with the theoretical prediction. Moreover, we find substantial OO signal well above the structural and magnetic transition temperatures, which suggests the existence of strong OO fluctuations up to high temperatures.

9.
Nat Commun ; 3: 1089, 2012.
Article in English | MEDLINE | ID: mdl-23011143

ABSTRACT

Many organic metals display exotic properties such as superconductivity, spin-charge separation and so on and have been described as quasi-one-dimensional Luttinger liquids. However, a genuine Fermi liquid behaviour with quasiparticles and Fermi surfaces have not been reported to date for any organic metal. Here, we report the experimental Fermi surface and band structure of an organic metal (BEDT-TTF)(3)Br(pBIB) obtained using angle-resolved photoelectron spectroscopy, and show its consistency with first-principles band structure calculations. Our results reveal a quasiparticle renormalization at low energy scales (effective mass m*=1.9 m(e)) and ω(2) dependence of the imaginary part of the self energy, limited by a kink at ~50 meV arising from coupling to molecular vibrations. The study unambiguously proves that (BEDT-TTF)(3)Br(pBIB) is a quasi-2D organic Fermi liquid with a Fermi surface consistent with Shubnikov-de Haas results.

10.
Science ; 337(6100): 1314-7, 2012 Sep 14.
Article in English | MEDLINE | ID: mdl-22984065

ABSTRACT

In iron-pnictide superconductivity, the interband interaction between the hole and electron Fermi surfaces (FSs) is believed to play an important role. However, KFe(2)As(2) has three zone-centered hole FSs and no electron FS but still exhibits superconductivity. Our ultrahigh-resolution laser angle-resolved photoemission spectroscopy unveils that KFe(2)As(2) is a nodal s-wave superconductor with highly unusual FS-selective multi-gap structure: a nodeless gap on the inner FS, an unconventional gap with "octet-line nodes" on the middle FS, and an almost-zero gap on the outer FS. This gap structure may arise from the frustration between competing pairing interactions on the hole FSs causing the eightfold sign reversal. Our results suggest that the A(1g) superconducting symmetry is universal in iron-pnictides, in spite of the variety of gap functions.

11.
Phys Rev Lett ; 109(23): 237011, 2012 Dec 07.
Article in English | MEDLINE | ID: mdl-23368253

ABSTRACT

We study the superconducting-gap anisotropy of the Γ-centered hole Fermi surface in optimally doped FeTe(0.6)Se(0.4) (T(c)=14.5 K), using laser-excited angle-resolved photoemission spectroscopy. We observe sharp superconducting (SC) coherence peaks at T=2.5 K. In contrast to earlier angle-resolved photoemission spectroscopy studies but consistent with thermodynamic results, the momentum dependence shows a cos(4φ) modulation of the SC-gap anisotropy. The observed SC-gap anisotropy strongly indicates that the pairing interaction is not a conventional phonon-mediated isotropic one. Instead, the results suggest the importance of second-nearest-neighbor electronic interactions between the iron sites in the framework of s(±)-wave superconductivity.

12.
Science ; 332(6029): 564-7, 2011 Apr 29.
Article in English | MEDLINE | ID: mdl-21474714

ABSTRACT

The origin of superconductivity in the iron pnictides has been attributed to antiferromagnetic spin ordering that occurs in close combination with a structural transition, but there are also proposals that link superconductivity to orbital ordering. We used bulk-sensitive laser angle-resolved photoemission spectroscopy on BaFe(2)(As(0.65)P(0.35))(2) and Ba(0.6)K(0.4)Fe(2)As(2) to elucidate the role of orbital degrees of freedom on the electron-pairing mechanism. In strong contrast to previous studies, an orbital-independent superconducting gap magnitude was found for the hole Fermi surfaces. Our result is not expected from the superconductivity associated with spin fluctuations and nesting, but it could be better explained invoking magnetism-induced interorbital pairing, orbital fluctuations, or a combination of orbital and spin fluctuations. Regardless of the interpretation, our results impose severe constraints on theories of iron pnictides.

13.
Phys Rev Lett ; 106(4): 047602, 2011 Jan 28.
Article in English | MEDLINE | ID: mdl-21405362

ABSTRACT

We study the surface and bulk electronic structure of the room-temperature ferromagnet Co∶TiO(2) anatase films using soft- and hard-x-ray photoemission spectroscopy with probe sensitivities of ∼1 and ∼10 nm, respectively. We obtain direct evidence of metallic Ti(3+) states in the bulk, which get suppressed to give a surface semiconductor, thus indicating the difference in electronic structure between surface and bulk. X-ray absorption and resonant photoemission spectroscopy reveal Ti(3+) electrons at the Fermi level (E(F)) and high-spin Co(2+) electrons occurring away from E(F). The results show the importance of the charge neutrality condition: Co(2+)+V(O)(2-)+2Ti(4+)↔Co(2+)+2Ti(3+) (V(O) is oxygen vacancy), which gives rise to the elusive Ti 3d carriers mediating ferromagnetism via the Co 3d-O 2p-Ti 3d exchange interaction pathway of the occupied orbitals.

14.
Phys Rev Lett ; 104(23): 236404, 2010 Jun 11.
Article in English | MEDLINE | ID: mdl-20867257

ABSTRACT

We investigate the electronic structure of chromium nitride (CrN) across the first-order magnetostructural transition at T(N)∼286 K. Resonant photoemission spectroscopy (PES) shows a gap in the 3d partial density of states at the Fermi level and an on-site Coulomb energy U∼4.5 eV, indicating strong electron-electron correlations. Bulk-sensitive high-resolution (6 meV) laser PES reveals a clear Fermi edge indicating an antiferromagnetic metal below T(N). Hard x-ray Cr 2p core-level PES shows T-dependent changes across T(N) which originate from screening due to coherent states as substantiated by cluster model calculations using the experimentally observed U. Electrical resistivity confirms an insulator above T(N) (E(g)∼70 meV) becoming a disordered metal below T(N). Thus, CrN transforms from a correlated insulator to an antiferromagnetic metal, coupled to the magnetostructural transition.

15.
Phys Rev Lett ; 104(24): 247201, 2010 Jun 18.
Article in English | MEDLINE | ID: mdl-20867330

ABSTRACT

Electronic structures of the quantum critical superconductor ß-YbAlB4 and its polymorph α-YbAlB4 are investigated by using bulk-sensitive hard x-ray photoemission spectroscopy. From the Yb 3d core level spectra, the values of the Yb valence are estimated to be ∼2.73 and ∼2.75 for α- and ß-YbAlB4, respectively, thus providing clear evidence for valence fluctuations. The valence band spectra of these compounds also show Yb2+ peaks at the Fermi level. These observations establish an unambiguous case of a strong mixed valence at quantum criticality for the first time among heavy fermion systems, calling for a novel scheme for a quantum critical model beyond the conventional Doniach picture in ß-YbAlB4.

16.
Phys Rev Lett ; 104(10): 106401, 2010 Mar 12.
Article in English | MEDLINE | ID: mdl-20366439

ABSTRACT

The Magnéli phase Ti(4)O(7) exhibits two sharp jumps in resistivity with coupled structural transitions as a function of temperature at T(c1) approximately 142 K and T(c2) = 154 K. We have studied electronic structure changes across the two transitions using 7 eV laser, soft x-ray, and hard x-ray (HX) photoemission spectroscopy (PES). Ti 2p-3d resonant PES and HX PES show a clear metallic Fermi edge and mixed valency above T(c2). The low temperature phase below T(c1) shows a clear insulating gap of approximately 100 meV. The intermediate phase between T(c1) and T(c2) indicates a pseudogap coexisting with remnant coherent states. HX PES and complementary calculations have confirmed the coherent screening in the strongly correlated intermediate phase. The results suggest the existence of a highly anomalous state sandwiched between the mixed-valent Fermi liquid and charge ordered Mott-insulating phase in Ti(4)O(7).

17.
Phys Rev Lett ; 104(5): 057002, 2010 Feb 05.
Article in English | MEDLINE | ID: mdl-20366786

ABSTRACT

Laser angle-resolved photoemission spectroscopy (ARPES) is employed to investigate the temperature (T) dependence of the electronic structure in BaFe2As2 across the magnetostructural transition at T{N} approximately 140 K. A drastic transformation in Fermi surface (FS) shape across T{N} is observed, as expected by first-principles band calculations. Polarization-dependent ARPES and band calculations consistently indicate that the observed FSs at k{z} approximately pi in the low-T antiferromagnetic state are dominated by the Fe3d{zx} orbital, leading to the twofold electronic structure. These results indicate that magnetostructural transition in BaFe2As2 accompanies orbital-dependent modifications in the electronic structure.

18.
Phys Rev Lett ; 104(6): 066407, 2010 Feb 12.
Article in English | MEDLINE | ID: mdl-20366842

ABSTRACT

Epitaxial ultrathin Fe films on fcc Cu(001) exhibit a spin spiral (SS), in contrast to the ferromagnetism of bulk bcc Fe. We study the in-plane (IP) and out-of-plane (OP) Fermi surfaces (FSs) of the SS in 8 monolayer Fe/Cu(001) films using energy-dependent soft-x-ray momentum-resolved photoemission spectroscopy. We show that the SS originates in nested regions confined to OP FSs, which are drastically modified compared to IP FSs. From precise reciprocal-space maps in successive zones, we obtain the associated real space compressive strain of 1.5+/-0.5% along c axis. An autocorrelation analysis quantifies the incommensurate ordering vector q=(2pi/a)(0,0, approximately 0.86), favoring a SS and consistent with magneto-optic Kerr effect experiments. The results reveal the importance of IP and OP FS mapping for ultrathin films.

19.
J Phys Condens Matter ; 22(9): 095502, 2010 Mar 10.
Article in English | MEDLINE | ID: mdl-21389417

ABSTRACT

CeOs(4)Sb(12) and CeFe(4)P(12) are classified as Kondo semiconductors, which show coupled changes in electrical transport, thermodynamic and magnetic properties with a low-temperature semiconductor-like electrical resistivity. We have carried out core level and valence band photoemission spectroscopy on single crystal CeOs(4)Sb(12) and CeFe(4)P(12) to study their electronic structure and the evolution of states at the Fermi level as a function of temperature (∼10-300 K). The Ce 3d core level spectra show the presence of f(0), f(1) and f(2) final states with very different relative intensities in the two compounds. Single-impurity Anderson model calculations provide f electron counts of n(f) = 0.97 and 0.86 per Ce atom, suggestive of a low- and high-T(K) (= single ion Kondo temperature) for CeOs(4)Sb(12) and CeFe(4)P(12), respectively. The high-resolution temperature-dependent near-Fermi level spectra show pseudogaps of energy ∼ 50 meV and ∼ 110 meV in the valence band density of states (DOS) of CeOs(4)Sb(12) and CeFe(4)P(12), respectively. The temperature dependence of the DOS at the Fermi level follows the change in effective magnetic moment estimated from magnetic susceptibility for both materials, confirming the Kondo nature of the pseudogap in CeOs(4)Sb(12) and CeFe(4)P(12). A compilation of measured pseudogaps using photoemission and optical spectroscopy identifies the charge gaps Δ(C) for Ce-based Kondo semiconductors and provides a direct relation with T(K) given by Δ(C) ∼ 2k(B)T(K). In conjunction with the known behaviour of the spin gaps Δ(S) ∼ k(B)T(K), the results establish the coupled energy scaling of the spin and charge gaps in Kondo semiconductors.

20.
Rev Sci Instrum ; 80(2): 023905, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19256660

ABSTRACT

We have developed an ultrahigh-vacuum instrument for resonant diffraction experiments using polarized soft x rays in the energy range of hnu=300-2000 eV at beamline BL17SU of SPring-8. The diffractometer consists of modified differentially pumped rotary feedthroughs for theta-2theta stages, a sample manipulator with motor-controlled x-y-z-, tilt (chi)-, and azimuth (phi)-axes, and a liquid helium flow-type cryostat for temperature dependent measurements between 30 and 300 K. Test results indicate that the diffractometer exhibits high reproducibility (better than 0.001 degrees ) for a Bragg reflection of alpha-quartz 100 at a photon energy of hnu=1950 eV. Typical off- and on-resonance Bragg reflections in the energy range of 530-1950 eV could be measured using the apparatus. The results show that x-ray diffraction experiments with energy-, azimuth-, and incident photon polarization-dependence can be reliably measured using soft x rays in the energy range of approximately 300-2000 eV. The facility can be used for resonant diffraction experiments across the L-edge of transition metals, M-edge of lanthanides, and up to the Si K-edge of materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...