Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Analyst ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39010793

ABSTRACT

Plastic pollution at the nanoscale continues to pose adverse effects on environmental sustainability and human health. However, the detection of nanoplastics (NPLs) remains challenging due to limitations in methodology and instrumentation. Herein, a "green approach" for surface-enhanced Raman spectroscopy (SERS) was exploited to detect polystyrene nanospheres (PSNSs) in water, employing untreated filter paper and a simple syringe-filtration set-up. This SERS protocol not only enabled the filtration of nano-sized PSNSs, which are smaller than the pore size of the ordinary filter paper, but also offered SERS enhancement by utilizing quasi-spherical-shaped silver nanoparticles (AgNPs) as the SERS-active substrate. The filtering of NPLs was accomplished by adding an aggregating agent to the nanoparticle mixture, which caused the aggregation of NPLs and AgNPs, resulting in a larger cluster and more hot spots for SERS detection. The optimal aggregating agent and its concentration, as well as the volume ratio between the AgNPs and NPLs, were also optimized. This SERS method successfully detected and quantified PSNSs of various sizes (i.e., 100, 300, 460, 600, and 800 nm) down to a limit of detection (LOD) of about 0.31 µg mL-1. The method was also validated against the presence of several interferents (i.e., salts, sugars, amino acids, and surfactants) and was proven practical, as evidenced by the detection of 800nm PSNSs in drinking and tap water (LODs of 1.47 and 1.55 µg mL-1, respectively).

2.
Analyst ; 148(19): 4677-4687, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37697928

ABSTRACT

Surface-enhanced Raman scattering (SERS) is a powerful technique for detecting trace amounts of analytes. However, the performance of SERS substrates depends on many variables including the enhancement factor, morphology, consistency, and interaction with target analytes. In this study, we investigated, for the first time, the use of electrospray deposition (ESD) combined with a novel ambient focusing DC ion funnel to deposit a high density of gold nanoparticles (AuNPs) to generate large-area, uniform substrates for highly sensitive SERS analysis. We found that the combination of ambient ion focusing with ESD facilitated high-density and intact deposition of non-spherical NPs. This also allowed us to take advantage of a polydisperse colloidal solution of AuNPs (consisting of nanospheres and nanorods), as confirmed by finite-difference time domain (FDTD) simulations. Our SERS substrate exhibited excellent capture capacity for model analyte molecules, namely 4-aminothiophenol (4-ATP) and Rhodamine 6G (R6G), with detection limits in the region of 10-11 M and a relative standard deviation of <6% over a large area (∼500 × 500 µm2). Additionally, we assessed the quantitative performance of our SERS substrate using the R6G probe molecule. The results demonstrated excellent linearity (R2 > 0.99) over a wide concentration range (10-4 M to 10-10 M) with a detection limit of 80 pM.

3.
J Hazard Mater ; 442: 130046, 2023 01 15.
Article in English | MEDLINE | ID: mdl-36182893

ABSTRACT

In this work, we successfully developed an intriguing preparation strategy to reduce the size-dependent effect of nanoplastics (NPLs), which is the limitation of NPLs quantification by surface-enhanced Raman scattering (SERS). This simple and low-cost technique enabled us to quantify different sizes (i.e., 100, 300, 600, and 800 nm) of polystyrene nanospheres (PS NSs) in various aqueous media. The SERS substrate was simply prepared by sputtering gold particles to cover on a glass cover slide. By dissolving PS NSs in toluene and preconcentrating by coffee-ring effect, SERS measurement can quantify NPLs at a very low concentration with a limit of detection (LOD) of approximately 0.10-0.26 µg/mL. The experiment was also conducted in the presence of interferences, including salts, sugars, amino acids, and detergents. The method was validated for quantitative analysis using a mixture of 100-, 300-, 600-, and 800-nm PS NSs in a ratio of 1:1:1:1 in real-world media (i.e., tap water, mineral water, and river water), which successfully approaches the evaluation of PS NSs in the range of 10-40 µg/mL with an LOD of approximately 0.32-0.52 µg/mL.


Subject(s)
Mineral Waters , Spectrum Analysis, Raman , Spectrum Analysis, Raman/methods , Microplastics , Polystyrenes/chemistry , Salts , Detergents , Gold/chemistry , Toluene , Amino Sugars
SELECTION OF CITATIONS
SEARCH DETAIL
...