Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Beilstein J Nanotechnol ; 14: 1028-1040, 2023.
Article in English | MEDLINE | ID: mdl-37915310

ABSTRACT

Hemoglobin-based oxygen carriers (HBOCs) as blood substitutes are one of the great hopes of modern transfusion and emergency medicine. After the major safety-relevant challenges of the last decades seem to be largely overcome, current developments have in common that they are affected by degradation and excretion at an early stage in test organisms. Several possible mechanisms that may be responsible for this are discussed in the literature. One of them is CD163, the receptor of the complex of haptoglobin (Hp) and hemoglobin (Hb). The receptor has been shown in various studies to have a direct affinity for Hb in the absence of Hp. Thus, it seems reasonable that CD163 could possibly also bind Hb within HBOCs and cause phagocytosis of the particles. In this work we investigated the role of CD163 in the uptake of our hemoglobin sub-micron particles (HbMPs) in monocytes and additionally screened for alternative ways of particle recognition by monocytes. In our experiments, blockade of CD163 by specific monoclonal antibodies proved to partly inhibit HbMP uptake by monocytes. It appears, however, that several other phagocytosis pathways for HbMPs might exist, independent of CD163 and also Hb.

2.
Polymers (Basel) ; 13(3)2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33494401

ABSTRACT

Non-sericin (NS) extract was produced from the ethanolic extract of Bombyx mori silk cocoons. This extract is composed of both carotenoids and flavonoids. Many of these compounds are composed of substances of poor aqueous solubility. Thus, this study focused on the development of a carrier system created from biocompatible and biodegradable materials to improve the biological activity of NS extracts. Accordingly, NS was incorporated into human serum albumin template particles with MnCO3 (NS-HSA MPs) by loading NS into the preformed HAS-MnCO3 microparticles using the coprecipitation crosslinking dissolution technique (CCD-technique). After crosslinking and template dissolution steps, the NS loaded HSA particles are negatively charged, have a size ranging from 0.8 to 0.9 µm, and are peanut shaped. The degree of encapsulation efficiency ranged from 7% to 57% depending on the initial NS concentration and the steps of adsorption. In addition, NS-HSA MPs were taken up by human lung adenocarcinoma (A549 cell) for 24 h. The promotion of cellular uptake was evaluated by flow cytometry and the results produced 99% fluorescent stained cells. Moreover, the results from CLSM and 3D fluorescence imaging confirmed particle localization in the cells. Interestingly, NS-HSA MPs could not induce inflammation through nitric oxide production from macrophage RAW264.7 cells. This is the first study involving the loading of non-sericin extracts into HSA MPs by CCD technique to enhance the bioavailability and biological effects of NS. Therefore, HSA MPs could be utilized as a carrier system for hydrophobic substances targeting cells with albumin receptors.

3.
Pharmaceutics ; 12(3)2020 Mar 02.
Article in English | MEDLINE | ID: mdl-32131545

ABSTRACT

Doxorubicin (DOX) is an effective anthracycline antibiotic drug which is commonly used in a broad range cancer therapy. However, due to dose depending side effects and toxicity to non-cancerous tissues, its clinical applications are restricted. To overcome these limitations, human serum albumin (HSA) has been investigated as a biocompatible drug delivery vehicle. In this study, human serum albumin submicron particles (HSA-MPs) were fabricated by using the Co-precipitation-Crosslinking-Dissolution technique (CCD technique) and DOX was loaded into the protein particles by absorption. DOX-HSA-MPs showed uniform peanut-like shape, submicron size and negative zeta-potential (-13 mV). The DOX entrapment efficiency was 25% of the initial amount. The in vitro release in phosphate buffered saline pH 7.4 was less than 1% within 5 h. In contrast, up to 40% of the entrapped DOX was released in presence of a protein digesting enzyme mixture (Pronase®) within the same time. In addition, in vitro cytotoxicity and cellular uptake of DOX-HSA-MPs were evaluated using the lung carcinoma cell line A549. The results demonstrated that DOX-HSA-MPs reduced the cell metabolic activities after 72 h. Interestingly, DOX-HSA-MPs were taken up by A549 cells up to 98% and localized in the cell lysosomal compartment. This study suggests that DOX-HSA-MPs which was fabricated by CCD technique is seen as a promising biopolymer particle as well as a viable alternative for drug delivery application to use for cancer therapy.

4.
Nanomaterials (Basel) ; 9(3)2019 Mar 25.
Article in English | MEDLINE | ID: mdl-30934597

ABSTRACT

Although riboflavin (RF) belongs to the water-soluble vitamins of group B, its solubility is low. Therefore, the application of micro-formulations may help to overcome this limiting factor for the delivery of RF. In this study we immobilized RF in newly developed albumin submicron particles prepared using the Co-precipitation Crosslinking Dissolution technique (CCD-technique) of manganese chloride and sodium carbonate in the presence of human serum albumin (HSA) and RF. The resulting RF containing HSA particles (RF-HSA-MPs) showed a narrow size distribution in the range of 0.9 to 1 µm, uniform peanut-like morphology, and a zeta-potential of -15 mV. In vitro release studies represented biphasic release profiles of RF in a phosphate buffered saline (PBS) pH 7.4 and a cell culture medium (RPMI) 1640 medium over a prolonged period. Hemolysis, platelet activation, and phagocytosis assays revealed a good hemocompatibility of RF-HSA-MPs.

5.
Artif Cells Nanomed Biotechnol ; 47(1): 241-249, 2019 Dec.
Article in English | MEDLINE | ID: mdl-30663396

ABSTRACT

Blood compatibility is a key requirement to fulfil for intravenous administration of drug and oxygen carrier system. Recently, we published the fabrication of oxidised-dextran (Odex)-crosslinked protein particles by one-pot formulation. In the current study we investigate the haemocompatibility of these Odex - particles including albumin particles (Odex-APs) and haemoglobin particles (Odex-HbMPs). Odex-APs and Odex-HbMPs have a submicron size ranged 800-1000 nm with peanut-like shape and a negative surface charge. In vitro haemocompatibility assays included haemolysis test, indirect phagocytosis test and platelet activation test in human blood. Odex-APs and Odex-HbMPs did not provoke any undesirable effects on the blood cells. Firstly, the ratio of haemolysis after contacted with Odex-crosslinked protein particles were less than 5% and therefore the particles may be considered non-haemolytic. Secondly, the incubation of leukocyte with Odex-APs/HbMPs did not influence the phagocytosis of leukocyte. We conclude that our particles are not recognized by monocytes or granulocytes. Finally, exposure of Odex-APs/HbMPs to platelets did not cause an activation of platelets. Additionally, Odex-HbMP/AP did not enhance or attenuate agonist-induced platelet activation. We conclude that Odex-crosslinked protein particles exhibit a very good haemocompatibility and represent highly promising carriers for drugs or oxygen.


Subject(s)
Albumins/chemistry , Albumins/pharmacology , Dextrans/chemistry , Hemoglobins/chemistry , Hemoglobins/pharmacology , Materials Testing , Particle Size , Hemolysis/drug effects , Humans , Phagocytosis/drug effects , Platelet Activation/drug effects
6.
Artif Cells Nanomed Biotechnol ; 46(sup3): S693-S701, 2018.
Article in English | MEDLINE | ID: mdl-30450978

ABSTRACT

Clinically applicable haemoglobin-based oxygen carriers (HBOCs) should neither induce immunological nor toxic reactions. Additionally, Hb should be protected against oxidation. In the absence of protective enzymes (superoxide dismutase (SOD) and catalase (CAT)) Hb is oxidized to MetHb and thus losing its function of oxygen delivery. Alternatively, polydopamine (PD), a scavenger of free radicals, could be used for Hb protection against oxidation Therefore, we synthetized HbMPs modified with PD. The content of functional haemoglobin in these PD-HbMPs was twice higher than that in the control HbMPs due to the protective antioxidant effect of PD. In addition, the PD-HbMPs exhibited a high scavenging activity of free radicals including H2O2 and excellent biocompatibility. In contrast to monomeric dopamine, which has been shown to produce toxic effects on neurons due to formation of H2O2, hydroxyl radicals and superoxide during the process of auto-oxidation, PD-HbMPs are not neurotoxic. Consequently, the results presented here suggest a great potential of PD-HbMPs as HBOCs.


Subject(s)
Free Radical Scavengers/chemistry , Hemoglobins/chemistry , Indoles/chemistry , Polymers/chemistry , Reactive Oxygen Species/chemistry , A549 Cells , Animals , Cattle , Humans
7.
Artif Cells Nanomed Biotechnol ; 46(sup3): S964-S972, 2018.
Article in English | MEDLINE | ID: mdl-30388380

ABSTRACT

The coprecipitation-cross-linking-dissolution (CCD) technique for protein submicron particle fabrication was improved by omitting one preparation step using the macromolecular cross-linker, periodate-oxidized dextran (Odex, M.W. of 40 and 70 kDa). The coprecipitation and cross-linking of haemoglobin (Hb) were combined in one single step since the cross-linker is incorporated into the inorganic template, MnCO3, together with the protein. After removal of the MnCO3 templates by EDTA, the amount of entrapped Hb was 60 to 70% of the initial amount. This technique provides deformable Hb submicron particles (HbMP) with narrow size distribution between 800 and 1000 nm, uniform morphology and negative zeta-potential. More than 40% of Hb in the particles was able to carry oxygen over a storage period of 90 days. The results suggest that our new protein submicron particle fabrication technique minimizes the fabrication time and is very efficient and cost-effective.


Subject(s)
Blood Substitutes/chemistry , Blood Substitutes/chemical synthesis , Hemoglobins/chemistry , Oxygen/chemistry , Animals , Cattle , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL
...