Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 466: 133471, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38266587

ABSTRACT

This review provides a comprehensive overview of the occurrence, fate, treatment and multi-criteria analysis of microplastics (MPs) and organic contaminants (OCs) in biosolids. A meta-analysis was complementarily analysed through the literature to map out the occurrence and fate of MPs and 10 different groups of OCs. The data demonstrate that MPs (54.7% occurrence rate) and linear alkylbenzene sulfonate surfactants (44.2% occurrence rate) account for the highest prevalence of contaminants in biosolids. In turn, dioxin, polychlorinated biphenyls (PCBs) and phosphorus flame retardants (PFRs) have the lowest rates (<0.01%). The occurrence of several OCs (e.g., dioxin, per- and polyfluoroalkyl substances, polycyclic aromatic hydrocarbons, pharmaceutical and personal care products, ultraviolet filters, phosphate flame retardants) in Europe appear at higher rates than in Asia and the Americas. However, MP concentrations in biosolids from Australia are reported to be 10 times higher than in America and Europe, which required more measurement data for in-depth analysis. Amongst the OC groups, brominated flame retardants exhibited exceptional sorption to biosolids with partitioning coefficients (log Kd) higher than 4. To remove these contaminants from biosolids, a wide range of technologies have been developed. Our multicriteria analysis shows that anaerobic digestion is the most mature and practical. Thermal treatment is a viable option; however, it still requires additional improvements in infrastructure, legislation, and public acceptance.


Subject(s)
Dioxins , Flame Retardants , Microplastics , Plastics , Biosolids , Flame Retardants/analysis
2.
Water Sci Technol ; 82(1): 97-106, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32910795

ABSTRACT

Domestic wastewater containing a high proportion of organic matter and nutrients is a serious pollution problem in developing countries. This study aimed to evaluate the performance of a novel attached-growth high rate algal pond (AG-HRAP) employing attached-growth media and artificial light sources for treating domestic wastewater and enhancing nutrient recovery. Light intensities in the range of 40-180 µmol/m2/s were used in the AG-HRAPs. The experimental results showed that the highest chemical oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP) removal efficiencies of 88, 62 and 69%, respectively, were found at the hydraulic retention time (HRT) of 15 days and the average light intensity of 180 µmol/m2/s. Moreover, the effluent COD concentrations could meet Thailand's national discharge standard. The highest biomass and protein productivities of 54 ± 4 and 37 ± 8 g/m2/d, respectively, were found in the AG-HRAPs, which were higher than in previous studies of HRAPs. The Stover-Kincannon kinetic values for COD, TN and TP removals of the AG-HRAPs (R2 = 0.9) were higher than those of the conventional systems. Additionally, the novel AG-HRAP system could provide a highly cost-effective operation when compared to other microalgal systems.


Subject(s)
Ponds , Wastewater , Lighting , Nutrients , Thailand , Waste Disposal, Fluid
3.
J Environ Manage ; 260: 110134, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32090830

ABSTRACT

Attached-growth photobioreactors (AG-PBRs) employing low-cost attached-growth media were applied to treat septic tank effluent which contained abundant organic and nutrient matters as well as pathogenic microorganisms. This study investigated effects of blue and red LED lights on organic, nutrient and pathogenic removals, biomass productivity and compositions of microbial community in the AG-PBR system. The experimental results showed the blue AG-PBR to be more effective in removing chemical oxygen demand (COD), total nitrogen (TN) and ammonia nitrogen (NH3-N) and generating biomass productivity than those of the red AG-PBR (P < 0.05). Mass balance analysis indicated that the TN and total phosphorus (TP) were removed mainly by assimilation into the biomass. The TN removal rates via nitrification and denitrification processes in the blue AG-PBR were found to be higher than that of the red AG-PBR, corresponding to the observed results of bacterial biomass and abundances of nitrifying and denitrifying bacterial species in the treatment systems. The maximal areal algal biomass productivity of 47 gDW/(m2. d) in the blue AG-PBRs was found to be higher than those of other algal attached-growth systems. Although, the red and blue AG-PBR systems could effectively treat the septic tank effluent to meet the national and international discharge standards, based on treatment efficiencies and biomass productivity, the blue AG-PBR is recommended for treatment of septic tank effluent.


Subject(s)
Phosphorus , Photobioreactors , Biomass , Motor Vehicles , Nitrification , Nitrogen
4.
J Environ Manage ; 250: 109526, 2019 Nov 15.
Article in English | MEDLINE | ID: mdl-31521036

ABSTRACT

Hospital wastewater contains acetaminophen (ACT) and nutrient, which need adequate removal and monitoring to prevent impact to environment and community. This study developed a pilot scale vertical flow constructed wetland (CW) to (1) remove high-dose ACT and pollutants in hospital wastewater and (2) identify the correlation of peroxidase enzyme extruded by Scirpus validus and pollutants removal efficiency. By that correlation, a low-cost method to monitor pollutants removal was drawn. Plants, such as Scirpus validus, generated peroxidase enzymes to alleviate pollutants' stress. Results showed that the CW removed 3.5 to 6 logs of initial concentration 10 mg ACT/L to a recommended level for drinking water. The CW eliminated COD, TKN and TP efficiently, meeting the wastewater discharged standards of Thailand and Vietnam. By various multivariable regression models, concentrations of ACT in CW effluent and enzymes in S. validus exhibited a significant correlation (p < 0.01, R2 = 68.3%). These findings suggested that (i) vertical flow CW could remove high-dose ACT and nutrient and (ii) peroxidase enzymes generated in S. validus, such as soluble and covalent ones, could track ACT removal efficiency. This would help to reduce facilities and analytical cost of micro-pollutants.


Subject(s)
Wastewater , Water Pollutants, Chemical , Acetaminophen , Nitrogen , Peroxidase , Peroxidases , Thailand , Vietnam , Waste Disposal, Fluid , Wetlands
5.
Water Sci Technol ; 78(11): 2355-2363, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30699087

ABSTRACT

Septic tank effluent contains high organic and nutrient contents. This study aimed to evaluate treatment performance of an algal-bacterial photobioreactor (AB-PBR) treating the septic tank effluent. The experimental unit employed a transparent plastic medium made from recycled drinking water bottles for attached-growth biofilm. Red LED lamp (light intensity ∼100 µmol/m2/s) was applied as an energy source for the growth of algal-bacterial biofilm in the AB-PBR. The experimental results showed that AB-PBR operated at the hydraulic retention time (HRT) of 3 days gave the highest chemical oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP) removal efficiencies of 64, 45 and 35%, respectively, by which the effluent COD concentrations could meet the effluent standards of Thailand, but the effluent TN and TP concentrations needed to be further removed. The Stover-Kincannon model was applied to determine the kinetic values of COD and TN removals with R2 values greater than 0.8. Microbiological examinations indicated Chlorella sp. is the predominant algal species growing in the AB-PBR, while the amplicon sequencing information analytical results revealed the bacterial phylum of Proteobacteria to be the predominant bacterial group.


Subject(s)
Photobioreactors , Waste Disposal, Fluid/methods , Chlorella , Kinetics , Nitrogen , Phosphorus , Thailand , Water Pollutants, Chemical
SELECTION OF CITATIONS
SEARCH DETAIL
...