Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 8(64): 36731-36744, 2018 Oct 26.
Article in English | MEDLINE | ID: mdl-35558945

ABSTRACT

The mechanisms of photoexcitation and photoionization in small water clusters in gas phase, (H2O) n ; n = 2-3, are studied using the complete active-space second-order perturbation theory (CASPT2) with the aug-cc-pVDZ basis set. The present study characterizes for the first time the structures and energetics of common transition and intermediate complexes in the photoexcitation and photoionization mechanisms in the lowest singlet-excited state. The ab initio results showed that the photoexcitation of the water monomer by a single photon can directly generate [OH]˙ and [H]˙ in their respective electronic-ground states, and a single photon with approximately the same energy can similarly lead to the photoexcitation and also to the photoionization in the water clusters. The S0 → S1 excitation leads to strong polarization of the O-H⋯O H-bond and to the formation of the water dimer radical cation transition state complex [(H2O)2]+˙, from which [OH]˙, [H]˙, and [H3O]+˙ can be generated. These products are obtained from [(H2O)2]+˙ by the direct dissociation of the O-H bond upon photoexcitation and by proton transfer and the formation of a metastable charge-separated Rydberg-like H-bond complex ([H3O]+˙⋯[OH]˙) upon photoionization. The proposed mechanisms suggest that in the gas phase, the photoexcitation and photoionization processes are most likely bimolecular reactions, in which all the transition and intermediate charged species are more stabilized than in a unimolecular reaction. The theoretical results provide insights into the photoexcitation and photoionization mechanisms of molecular clusters and can be used as guidelines for further theoretical and experimental studies.

2.
J Phys Chem A ; 119(43): 10637-44, 2015 Oct 29.
Article in English | MEDLINE | ID: mdl-26439365

ABSTRACT

Binding of a single water molecule has a dramatic effect on the excited state lifetime of adenine. Here we report a joint nonadiabatic dynamics and reaction paths study aimed at understanding the sub-100 fs lifetime of adenine in the monohydrates. Our nonadiabatic dynamics simulations, performed using the ADC(2) electronic structure method, show a shortening of the excited state lifetime in the monohydrates with respect to bare adenine. However, the computed lifetimes were found to be significantly longer that the observed one. By comparing the reaction pathways of several excited state deactivation processes in adenine and adenine monohydrates, we show that electron-driven proton transfer from water to nitrogen atom N3 of the adenine ring may be the process responsible for the observed ultrafast decay. The inaccessibility of the electron-driven proton transfer pathway to trajectory-based nonadiabatic dynamics simulation is discussed.


Subject(s)
Adenine/chemistry , Quantum Theory , Adenine/analogs & derivatives , Molecular Dynamics Simulation , Water/chemistry
3.
Phys Chem Chem Phys ; 17(29): 19012-20, 2015 Jul 15.
Article in English | MEDLINE | ID: mdl-26129838

ABSTRACT

The excitation wavelength dependent photodynamics of pyrrole are investigated by nonadiabatic trajectory-surface-hopping dynamics simulations based on time dependent density functional theory (TDDFT) and the algebraic diagrammatic construction method to the second order (ADC(2)). The ADC(2) results confirm that the N-H bond dissociation occurring upon excitation at the origin of the first excited state, S1(πσ*), is driven by tunnelling [Roberts et al., Faraday Discuss., 2013, 163, 95] as a barrier of ΔE = 1780 cm(-1) traps the population in a quasi-bound minimum. Upon excitation to S1(πσ*) in the wavelength range of 236-240 nm, direct dissociation of the N-H bond takes place with a time constant of 28 fs. The computed time constant is in very good agreement with recently reported measurements. Excitation to the lowest B2 state in the 198-202 nm range returns a time constant for N-H fission of 48 fs at the B3LYP/def2-TZVPD level, in perfect agreement with the experiment [Roberts et al. Faraday Discuss., 2013, 163, 95]. For the same wavelength range the ADC(2)/aug-cc-pVDZ decay constant is more than three times longer than the experimentally reported one. The accuracy of the B3LYP/def2-TZVPD dynamics is checked against reference complete-active-space second-order perturbation theory (CASPT2) calculations and explained in terms of correct topography of the ππ* surface and the lack of mixing between the ππ* and the 3px Rydberg states which occurs in the ADC(2) method.

4.
J Comput Chem ; 33(2): 175-88, 2012 Jan 15.
Article in English | MEDLINE | ID: mdl-22009491

ABSTRACT

Dynamics and mechanism of proton transfer in a protonated hydrogen bond (H-bond) chain were studied, using the CH(3)OH(2)(+)(CH(3)OH)(n) complexes, n = 1-4, as model systems. The present investigations used B3LYP/TZVP calculations and Born-Oppenheimer MD (BOMD) simulations at 350 K to obtain characteristic H-bond structures, energetic and IR spectra of the transferring protons in the gas phase and continuum liquid. The static and dynamic results were compared with the H(3)O(+)(H(2)O)(n) and CH(3)OH(2)(+)(H(2)O)(n) complexes, n = 1-4. It was found that the H-bond chains with n = 1 and 3 represent the most active intermediate states and the CH(3)OH(2)(+)(CH(3)OH)(n) complexes possess the lowest threshold frequency of proton transfer. The IR spectra obtained from BOMD simulations revealed that the thermal energy fluctuation and dynamics help promote proton transfer in the shared-proton structure with n = 3 by lowering the vibrational energy for the interconversion between the oscillatory shuttling and structural diffusion motions, leading to a higher population of the structural diffusion motion than in the shared-proton structure with n = 1. Additional explanation on the previously proposed mechanisms was introduced, with the emphases on the energetic of the transferring proton, the fluctuation of the number of the CH(3)OH molecules in the H-bond chain, and the quasi-dynamic equilibriums between the shared-proton structure (n = 3) and the close-contact structures (n ≥ 4). The latter prohibits proton transfer reaction in the H-bond chain from being concerted, since the rate of the structural diffusion depends upon the lifetime of the shared-proton intermediate state.


Subject(s)
Diffusion , Quantum Theory , Hydrogen Bonding , Methanol/chemistry , Molecular Structure , Protons , Water/chemistry
5.
Phys Chem Chem Phys ; 13(23): 10923-39, 2011 Jun 21.
Article in English | MEDLINE | ID: mdl-21584294

ABSTRACT

Proton transfer reactions and dynamics of the hydrophilic group (-SO(3)H) in Nafion® were studied at low hydration levels using the complexes formed from CF(3)SO(3)H, H(3)O(+) and nH(2)O, 1 ≤n≤ 3, as model systems. The equilibrium structures obtained from DFT calculations suggested at least two structural diffusion pathways at the -SO(3)H group namely, the "pass-through" and "pass-by" mechanisms. The former involves the protonation and deprotonation at the -SO(3)H group, whereas the latter the proton transfer in the adjacent Zundel complex. Analyses of the asymmetric O-H stretching frequencies (ν(OH)) of the hydrogen bond (H-bond) protons showed the threshold frequencies (ν(OH*)) of proton transfer in the range of 1700 to 2200 cm(-1). Born-Oppenheimer Molecular Dynamics (BOMD) simulations at 350 K anticipated slightly lower threshold frequencies (ν(A)(OH*,MD)), with two characteristic asymmetric O-H stretching frequencies being the spectral signatures of proton transfer in the H-bond complexes. The lower frequency (ν(A)(OH,MD))) is associated with the oscillatory shuttling motion and the higher frequency (ν(B)(OH,MD))) the structural diffusion motion. Comparison of the present results with BOMD simulations on protonated water clusters indicated that the -SO(3)H group facilitates proton transfer by reducing the vibrational energy for the interconversion between the two dynamic states (Δν), resulting in a higher population of the H-bonds with the structural diffusion motion. One could therefore conclude that the -SO(3)H groups in Nafion® act as active binding sites which provide appropriate structural, energetic and dynamic conditions for effective structural diffusion processes in a proton exchange membrane fuel cell (PEMFC). The present results suggested for the first time a possibility to discuss the tendency of proton transfer in H-bond using Δν(BA)(OH,MD)) and provided theoretical bases and guidelines for the investigations of proton transfer reactions in theory and experiment.

6.
Phys Chem Chem Phys ; 12(4): 918-29, 2010 Jan 28.
Article in English | MEDLINE | ID: mdl-20066377

ABSTRACT

Proton transfer reactions and dynamics in hydrated complexes formed from CH(3)OH, H(3)O(+) and H(2)O were studied using theoretical methods. The investigations began with searching for equilibrium structures at low hydration levels using the DFT method, from which active H-bonds in the gas phase and continuum aqueous solution were characterized and analyzed. Based on the asymmetric stretching coordinates (Deltad(DA)), four H-bond complexes were identified as potential transition states, in which the most active unit is represented by an excess proton nearly equally shared between CH(3)OH and H(2)O. These cannot be definitive due to the lack of asymmetric O-H stretching frequencies (nu(OH)) which are spectral signatures of transferring protons. Born-Oppenheimer molecular dynamics (BOMD) simulations revealed that, when the thermal energy fluctuations and dynamics were included in the model calculations, the spectral signatures at nu(OH) approximately 1000 cm(-1) appeared. In continuum aqueous solution, the H-bond complex with incomplete water coordination at charged species turned out to be the only active transition state. Based on the assumption that the thermal energy fluctuations and dynamics could temporarily break the H-bonds linking the transition state complex and water molecules in the second hydration shell, elementary reactions of proton transfer were proposed. The present study showed that, due to the coupling among various vibrational modes, the discussions on proton transfer reactions cannot be made based solely on static proton transfer potentials. Inclusion of thermal energy fluctuations and dynamics in the model calculations, as in the case of BOMD simulations, together with systematic IR spectral analyses, have been proved to be the most appropriate theoretical approaches.

7.
Phys Chem Chem Phys ; 10(15): 2098-112, 2008 Apr 21.
Article in English | MEDLINE | ID: mdl-18688364

ABSTRACT

Proton transfer reactions at the sulfonic acid groups in Nafion were theoretically studied, using complexes formed from triflic acid (CF3SO3H), H3O+ and H2O, as model systems. The investigations began with searching for potential precursors and transition states at low hydration levels, using the test-particle model (T-model), density functional theory (DFT) and ab initio calculations. They were employed as starting configurations in Born-Oppenheimer molecular dynamics (BOMD) simulations at 298 K, from which elementary reactions were analyzed and categorized. For the H3O+-H2O complexes, BOMD simulations suggested that a quasi-dynamic equilibrium could be established between the Eigen and Zundel complexes, and that was considered to be one of the most important elementary reactions in the proton transfer process. The average lifetime of H3O+ obtained from BOMD simulations is close to the lowest limit, estimated from low-frequency vibrational spectroscopy. It was demonstrated that proton transfer reactions at -SO3H are not concerted, due to the thermal energy fluctuation and the existence of various quasi-dynamic equilibria, and -SO3H could directly and indirectly mediate proton transfer reactions through the formation of proton defects, as well as the -SO3- and -SO3H2+ transition states.


Subject(s)
Fluorocarbon Polymers/chemistry , Protons , Sulfonic Acids/chemistry , Computer Simulation , Models, Molecular , Molecular Conformation , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...