Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 6012, 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37045928

ABSTRACT

Fly ash solid waste from a power plant was applied in a solar cell application for the first time. A doctor blade was used to coat FTO-glass with a composite film of mixed fly ash and PEDOT:PSS (FP). XRD, FTIR, SEM, EDX, and BET analyses were used to elucidate the crystal structure, morphology, and functional groups of fly ash in the current research. A significantly high efficiency solar cell was fabricated utilizing fly ash. CV, Tafel, and EIS analyses indicated a decrease in charge transfer resistance and an increased catalytic activity in the counter electrodes. The performance of DSSCs made from FP counter electrodes varied depending on the percentage of fly ash particles present. Fly ash mixed with PEDOT:PSS in a concentration ratio of 2:5 g/mL showed a high efficiency of 4.23%, which is comparable to Pt DSSC's (4.84%). Moreover, FP-2:5 presented a more highly efficient electrode than counter electrodes made from PEDOT:PSS mixed with MoO (3.08%) and CoO (3.65%). This suitability of this low-cost CE material for use in DSSCs has been established.

2.
J Math Biol ; 70(6): 1249-94, 2015 May.
Article in English | MEDLINE | ID: mdl-24832542

ABSTRACT

A particular interaction-diffusion mussel-algae model system for the development of spontaneous stationary young mussel bed patterning on a homogeneous substrate covered by a quiescent marine layer containing algae as a food source is investigated employing weakly nonlinear diffusive instability analyses. The main results of these analyses can be represented by plots in the ratio of mussel motility to algae lateral diffusion versus the algae reservoir concentration dimensionless parameter space. Regions corresponding to bare sediment and mussel patterns consisting of rhombic or hexagonal arrays and isolated clusters of clumps or gaps, an intermediate labyrinthine state, and homogeneous distributions of low to high density may be identified in this parameter space. Then those Turing diffusive instability predictions are compared with both relevant field and laboratory experimental evidence and existing numerical simulations involving differential flow migrating band instabilities for the associated interaction-dispersion-advection mussel-algae model system as well as placed in the context of the results from some recent nonlinear pattern formation studies.


Subject(s)
Chlamydomonas/physiology , Models, Biological , Mytilus edulis/physiology , Algorithms , Animals , Biostatistics , Computer Simulation , Diffusion , Food Chain , Mathematical Concepts , Movement , Nonlinear Dynamics , Pattern Recognition, Automated/statistics & numerical data
SELECTION OF CITATIONS
SEARCH DETAIL
...