Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 24(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732962

ABSTRACT

Being motivated has positive influences on task performance. However, motivation could result from various motives that affect different parts of the brain. Analyzing the motivation effect from all affected areas requires a high number of EEG electrodes, resulting in high cost, inflexibility, and burden to users. In various real-world applications, only the motivation effect is required for performance evaluation regardless of the motive. Analyzing the relationships between the motivation-affected brain areas associated with the task's performance could limit the required electrodes. This study introduced a method to identify the cognitive motivation effect with a reduced number of EEG electrodes. The temporal association rule mining (TARM) concept was used to analyze the relationships between attention and memorization brain areas under the effect of motivation from the cognitive motivation task. For accuracy improvement, the artificial bee colony (ABC) algorithm was applied with the central limit theorem (CLT) concept to optimize the TARM parameters. From the results, our method can identify the motivation effect with only FCz and P3 electrodes, with 74.5% classification accuracy on average with individual tests.


Subject(s)
Algorithms , Cognition , Electroencephalography , Motivation , Motivation/physiology , Electroencephalography/methods , Humans , Cognition/physiology , Male , Adult , Female , Brain/physiology , Young Adult , Electrodes , Data Mining/methods
2.
Entropy (Basel) ; 23(5)2021 May 16.
Article in English | MEDLINE | ID: mdl-34065692

ABSTRACT

The way people learn will play an essential role in the sustainable development of the educational system for the future. Utilizing technology in the age of information and incorporating it into how people learn can produce better learners. Implicit learning is a type of learning of the underlying rules without consciously seeking or understanding the rules; it is commonly seen in small children while learning how to speak their native language without learning grammar. This research aims to introduce a processing system that can systematically identify the relationship between implicit learning events and their Encephalogram (EEG) signal characteristics. This study converted the EEG signal from participants while performing cognitive task experiments into Multiscale Entropy (MSE) data. Using MSE data from different frequency bands and channels as features, the system explored a wide range of classifiers and observed their performance to see how they classified the features related to participants' performance. The Artificial Bee Colony (ABC) method was used for feature selection to improve the process to make the system more efficient. The results showed that the system could correctly identify the differences between participants' performance using MSE data and the ABC method with 95% confidence.

SELECTION OF CITATIONS
SEARCH DETAIL
...