Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res ; 246: 120709, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37871374

ABSTRACT

The detection of trace levels of organic residue in water samples is a key health issue. This manuscript describes the fabrication of integrated nano-sensors composed of electrospun microfibers consisting of a nanocomposite of carbonaceous materials (CNMs) containing polyaniline (PANI) and polycaprolactone (PCL) for phenolic detection in aqueous solutions. The morphology of the resulting microfiber composite was characterized by scanning electron microscopy. It revealed elongated fibers with a highly interconnected web-like pattern in the presence of reduced graphene oxide (rGO). Shorter microfibers were observed in the composite filled with multi-walled carbon nanotubes (MWCNTs), whereas large agglomerates were formed upon the incorporation of single-walled CNTs (SWCNTs) and graphene 300 (G300). Comparative analysis showed that the PANI/CNM sensors exhibited the best electrochemical properties, in particular in the presence of rGO and MWCNTs, where greater electrical conductivity was achieved, i.e., 4.33 × 10-3 and 7.22 × 10-4 S/cm, respectively, as compared to the PANI-PCL sensor (3.79 × 10-4 S/cm). All the PANI/CNM sensors exhibited high sensitivity. Notably, PANI/rGO was found to have a detection limit of 8.34 × 10-3 µM for aminophenol. All the sensors exhibited good selectivity in the presence of interference to detecting phenolic compounds in aqueous solutions, thus confirming their value for industrial applications.


Subject(s)
Graphite , Nanotubes, Carbon , Nanotubes, Carbon/chemistry , Water , Graphite/chemistry
2.
Sensors (Basel) ; 21(17)2021 Aug 30.
Article in English | MEDLINE | ID: mdl-34502739

ABSTRACT

Meeting global water quality standards is a real challenge to ensure that food crops and livestock are fit for consumption, as well as for human health in general. A major hurdle affecting the detection of pollutants in water reservoirs is the lapse of time between the sampling moment and the availability of the laboratory-based results. Here, we report the preparation, characterization, and performance assessment of an innovative sensor for the rapid detection of organic residue levels and pH in water samples. The sensor is based on carbonaceous nanomaterials (CNMs) coated with an intrinsically conductive polymer, polyaniline (PANI). Inverse emulsion polymerizations of aniline in the presence of carbon nanotubes (CNTs) or graphene were prepared and confirmed by thermogravimetric analysis and high-resolution scanning electron microscopy. Aminophenol and phenol were used as proxies for organic residue detection. The PANI/CNM nanocomposites were used to fabricate thin-film sensors. Of all the CNMs, the smallest limit of detection (LOD) was achieved for multi-walled CNT (MWCNT) with a LOD of 9.6 ppb for aminophenol and a very high linearity of 0.997, with an average sensitivity of 2.3 kΩ/pH at an acid pH. This high sensor performance can be attributed to the high homogeneity of the PANI coating on the MWCNT surface.


Subject(s)
Graphite , Nanocomposites , Nanotubes, Carbon , Aniline Compounds , Humans , Hydrogen-Ion Concentration , Limit of Detection
SELECTION OF CITATIONS
SEARCH DETAIL
...