Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(24)2022 Dec 10.
Article in English | MEDLINE | ID: mdl-36556642

ABSTRACT

The purpose of this article is to determine the effect of granite powder grain size and grinding time on the properties of cement paste. A series of cement pastes modified by the addition of granite powder were made and the properties of the fresh mixtures and the mechanical properties of hardened pastes were studied. Based on the study, the best results, from the point of view of the application of granite powder in cementitious composites, were obtained for a sample with granite powder ground for 3 h, in which 50% of the particles were smaller than 4 µm, and 90% were below 20 µm. Compressive strength of 55 MPa and flexural strength of 6.8 MPa were obtained on this sample after aging for 28 days. To confirm the validity of using granite powder as substitute materials, additional tests such as scanning microscopy with elemental analysis (SEM, EDS) and infrared (FTIR) studies were performed.

2.
Materials (Basel) ; 15(24)2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36556871

ABSTRACT

Granite is a well-known building and decorative material, and, therefore, the amount of produced waste in the form of granite powder is a problem. Granite powder affects the health of people living near landfills. Dust particles floating in the air, which are blown by gusts of wind, can lead to lung silicosis and eye infections, and can also affect the immune system. To find an application for this kind of waste material, it was decided to study the effect of partially replacing cement with waste granite powder on the properties of fresh and hardened mortars intended for masonry applications. The authors planned to replace 5%, 10%, and 15% of cement with waste material. Series of mortar with the addition of granite powder achieved 50% to 70% of the compressive strength of the reference series, and 60% to 76% of the bending strength of the reference series. The partial replacement of cement with the granite powder significantly increased the water sorption coefficient. The consistency of the fresh mortar, and its density and water absorption also increased when compared to the reference series. Therefore, Granite powder can be used as a partial replacement of cement in masonry mortars.

3.
Sci Rep ; 12(1): 13242, 2022 Aug 02.
Article in English | MEDLINE | ID: mdl-35918391

ABSTRACT

In this study, a machine learning model for the precise manufacturing of green cementitious composites modified with granite powder sourced from quarry waste was designed. For this purpose, decision tree, random forest and AdaBoost ensemble models were used and compared. A database was created containing 216 sets of data based on an experimental study. The database consists of parameters such as the percentage of cement substituted with granite powder, time of testing and curing conditions. It was shown that this method for designing green cementitious composite mixes, in terms of predicting compressive strength using ensemble models and only three input parameters, can be more accurate and much more precise than the conventional approach. Moreover, to the best of the authors' knowledge, artificial intelligence has been one of the most effective and precise methods used in the design and manufacturing industry in recent decades. The simplicity of this method makes it more suitable for construction practice due to the ease of evaluating the input variables. As the push towards decreasing carbon emissions increases, a method for designing green cementitious composites without producing waste that is more precise than traditional tests performed in a laboratory is essential.

4.
Materials (Basel) ; 14(5)2021 Mar 04.
Article in English | MEDLINE | ID: mdl-33806606

ABSTRACT

The partial replacement of cement in concrete with the addition of granite powder and fly ash can help to reduce the carbon dioxide (CO2) emissions into the atmosphere associated with cement production. The aim of the article is to compare the performance of granite powder and fly ash for the sustainable production of air-cured cementitious mortars. The morphological, chemical, and granulometric properties of these additives were first compared with the properties of cement. Afterward, a series of mortars modified with the addition of granite powder and fly ash was made. The properties of the fresh mixes and the mechanical properties of the hardened composites were then tested. Finally, based on the obtained results, a cost analysis of the profitability of modifying cementitious composites with granite powder or fly ash was investigated. The obtained results allow similarities and differences between granite powder and fly ash in relation to cement to be shown. To conclude, it should be stated that both of these materials can successfully be used for the sustainable production of air-cured cementitious composites. This conclusion has a significant impact on the possibility of improving the natural environment by reducing the amount of cement production. More sustainable production of cement-based materials could enable CO2 emissions to be decreased. The use of granite powder for the production of cementitious mortars can significantly reduce the amount of this material deposited in landfills.

5.
Materials (Basel) ; 13(24)2020 Dec 21.
Article in English | MEDLINE | ID: mdl-33371427

ABSTRACT

The article presents a comparative analysis of the impact of the addition of steel and polypropylene fibers on the properties of the concrete mixes and hardened concrete used in the concrete floor industry. The behavior of concrete intended for floors is different from conventional structural concrete because it is formed horizontally; until now, the effect of steel and polypropylene fibers on the properties of concrete formed horizontally has not yet been fully understood. Therefore, the aim of this article is to examine this issue and compare the behavior of concrete modified with steel and polypropylene fibers in concrete that is formed horizontally. The following properties of fresh concrete mixes were analyzed: consistency, the content of air-voids, and bulk density. Consequently, the following properties of hardened concrete were analyzed: compressive strength, bending tensile strength, and brittleness. It was confirmed that steel and polypropylene fibers have a different type of effect on the properties of fresh concrete mixes and hardened concrete. Finally, a combined economic and mechanical analysis was performed.

SELECTION OF CITATIONS
SEARCH DETAIL
...