Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Clin Med Phys ; 16(1): 5238, 2015 Jan 08.
Article in English | MEDLINE | ID: mdl-25679179

ABSTRACT

For accurate delivery of volumetric-modulated arc therapy (VMAT), the gantry position should be synchronized with the multileaf collimator (MLC) leaf positions and the dose rate. This study, therefore, aims to implement quality control (QC) of VMAT synchronization, with as few arcs as possible and with minimal data handling time, using portal imaging. A steel bar of diameter 12 mm is accurately positioned in the G-T direction, 80 mm laterally from the isocenter. An arc prescription irradiates the bar with a 16 mm × 220 mm field during a complete 360° arc, so as to cast a shadow of the bar onto the portal imager. This results in a sinusoidal sweep of the field and shadow across the portal imager and back. The method is evaluated by simulating gantry position errors of 1°-9° at one control point, dose errors of 2 monitor units to 20 monitor units (MU) at one control point (0.3%-3% overall), and MLC leaf position errors of 1 mm - 6 mm at one control point. Inhomogeneity metrics are defined to characterize the synchronization of all leaves and of individual leaves with respect to the complete set. Typical behavior is also investigated for three models of accelerator. In the absence of simulated errors, the integrated images show uniformity, and with simulated delivery errors, irregular patterns appear. The inhomogeneity metrics increase by 67% due to a 4° gantry position error, 33% due to an 8 MU (1.25%) dose error, and 70% due to a 2 mm MLC leaf position error. The method is more sensitive to errors at gantry angle 90°/270° than at 0°/180° due to the geometry of the test. This method provides fast and effective VMAT QC suitable for inclusion in a monthly accelerator QC program. The test is able to detect errors in the delivery of individual control points, with the possibility of using movie images to further investigate suspicious image features.


Subject(s)
Diagnostic Imaging , Neoplasms/radiotherapy , Particle Accelerators/standards , Quality Assurance, Health Care/methods , Quality Control , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Humans , Radiotherapy Dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...