Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Radiat Biol ; 92(11): 633-640, 2016 11.
Article in English | MEDLINE | ID: mdl-27603222

ABSTRACT

PURPOSE: A challenge for single-cell dosimetry of internalized Auger electron-emitting (AE) radiopharmaceuticals remains how best to elucidate their spatial distribution. To this end, a method, photoresist autoradiography (PAR), was previously developed to identify the lateral spatial distribution of AE-emitting radionuclides internalized in single cancer cells. In this paper, we present a simple mathematical model based on the radius and depth of radiation-induced patterns in photoresist material to identify the location in the z-plane of an 111In source capable of generating the pattern. MATERIALS AND METHODS: SQ20B cells, derived from a head and neck squamous cell carcinoma, were exposed to 111In-labeled epidermal growth factor (EGF) (8 MBq/µg). The integrated electron fluence after four half-lives from the internalized radionuclide-containing construct was detected by a photoresist layer that was placed in close proximity to the cells. The resultant latent patterns were chemically developed and analyzed by atomic force microscopy (AFM). The features in the patterns were matched to locations of electrons emitted from simulated point sources, thereby determining the likely locations of internalized radionuclides. RESULTS: The modeling procedure was validated using simple patterns. The model relates the depth and radius (in the x-y plane) of a pattern to the location and fluence of the source giving rise to the pattern. This point source modeling method provided a good fit to experimental data and can be expanded to analyze more complex patterns. CONCLUSIONS: We have demonstrated the utility of the modelling technique to identify the location of internalized AE-emitting radionuclides. This methodology now needs to be extended to predict the source positions in more complex PAR patterns.


Subject(s)
Autoradiography/methods , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/radiotherapy , Electrons/therapeutic use , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/radiotherapy , Indium Radioisotopes/pharmacokinetics , Models, Biological , Radiometry/methods , Cell Line, Tumor , Computer Simulation , Humans , Radiotherapy Dosage , Reproducibility of Results , Sensitivity and Specificity , Squamous Cell Carcinoma of Head and Neck , Tissue Distribution
2.
Phys Med Biol ; 58(21): 7673-82, 2013 Nov 07.
Article in English | MEDLINE | ID: mdl-24113400

ABSTRACT

The interactions between energetic ions and biological and/or organic target materials have recently attracted theoretical and experimental attention, due to their implications for detector and device technologies, and for therapeutic applications. Most of the attention has focused on detection of the primary ionization tracks, and their effects, while recoil target atom tracks remain largely unexplored. Detection of tracks by a negative tone photoresist (SU-8), followed by standard development, in combination with analysis by atomic force microscopy, shows that both primary and recoil tracks are revealed as conical spikes, and can be characterized at high spatial resolution. The methodology has the potential to provide detailed information about single impact events, which may lead to more effective and informative detector technologies and advanced therapeutic procedures. In comparison with current characterization methods the advantageous features include: greater spatial resolution by an order of magnitude (20 nm); detection of single primary and associated recoil tracks; increased range of fluence (to 2.5 × 10(9) cm(-2)); sensitivity to impacts at grazing angle incidence; and better definition of the lateral interaction volume in target materials.


Subject(s)
Alpha Particles , Microscopy, Atomic Force , Radiobiology/methods , Epoxy Compounds , Polymers , Radiometry , Reproducibility of Results
3.
Int J Radiat Biol ; 88(12): 933-40, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22862676

ABSTRACT

PURPOSE: To explore poly(methyl methacrylate) (PMMA950) as an autoradiography substrate. MATERIALS AND METHODS: PMMA950 was spin coated onto a silicon substrate. Resists were exposed to either a 25 or 50 keV electron beam (e-beam) with fluences of 0.1-33.6 µC/cm(2). The resulting patterns were analyzed by atomic force microscopy (AFM). The dependence of pattern sensitivity and resolution on resist thickness, development time and electron energy was evaluated and correlated with Monte Carlo (MC) modeling. Conventional micro-autoradiography (MAR) images were compared to AFM images of photoresist patterns obtained following exposure from (111)In-diethylenetriaminepentaacetic acid (DTPA)-human epidermal growth factor (hEGF) (4-6 MBq/µg, 40 nM DTPA-hEGF)-treated human breast cancer cells MDA-MB-468. RESULTS: MC simulation results confirmed the similarity of particle transport in PMMA950 exposed to either an (111)In point source or a 25 keV e-beam. Sensitivity was inversely related to resist thickness. Development conditions of the resists greatly affected image quality. Sensitivity of PMMA950 was similar to the UVIII™ resist (consisting of a copolymer of 4-hydroxystyrene and t- butylacrylate) at low electron fluence for both 25 and 50 keV e-beam exposure. AFM evaluation of the exposure patterns from (111)In-DTPA-hEGF treated cells and nuclei provides more detailed information in comparison with that from MAR. CONCLUSIONS: Photoresist autoradiography can provide information on both the distribution of radiation sources and their strengths within a biological sample; however, the choice of photoresist material and processing conditions greatly affects the outcome.


Subject(s)
Autoradiography/methods , Electrons , Indium Radioisotopes/metabolism , Intracellular Space/metabolism , Polymethyl Methacrylate/metabolism , Biological Transport , Cell Line, Tumor , Cell Nucleus/metabolism , Cell Nucleus/radiation effects , Epidermal Growth Factor/chemistry , Epidermal Growth Factor/metabolism , Humans , Intracellular Space/radiation effects , Monte Carlo Method , Pentetic Acid/chemistry
4.
Biomaterials ; 32(26): 6138-44, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21621836

ABSTRACT

Evaluation of the intracellular distribution of radionuclides used for targeted radiotherapy (tRT) is essential for accurate dosimetry. Therefore, a direct and quantitative method for subcellular micro-autoradiography using radiation sensitive polymers (PMMA, UV1116 and AZ40XT) was developed. The electron exposure dose in radio-labelled cells due to Auger and internal conversion (IC) electron emissions of indium (¹¹¹In), a radionuclide currently used for tRT, was calculated using Monte Carlo (MC) simulation. Electron beam lithography using pre-defined exposure doses was used to calibrate the resist response. The topography of the exposed and developed resists was analysed with atomic force microscopy (AFM) and the resulting pattern depth was related to a specific exposure dose. UV1116 exhibited the best contrast as compared to AZ40XT and PMMA, while AZ40XT exhibited the highest sensitivity at low doses (<10 µC/cm²). AFM analysis of the exposure pattern from radio-labelled cells and nuclei in UV1116 revealed a non-uniform distribution of ¹¹¹In-EGF in the cell and nucleus, consistent with less well-resolved data from confocal microscopy and micro-autoradiography.


Subject(s)
Autoradiography/methods , Photochemistry/methods , Radiotherapy/methods , Light , Microscopy, Atomic Force , Polymethyl Methacrylate/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...